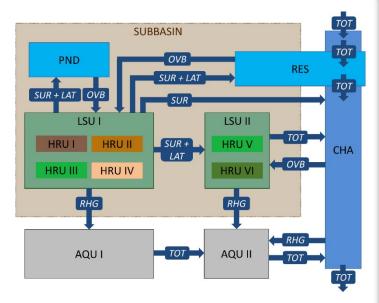
SVAT+MODFLOW Coupling the SWAT+ and MODFLOW codes for enhanced surface / subsurface flow modeling in watersheds

Seonggyu Park, Ryan T. Bailey, Katrin Bieger, Jeffery Arnold

2018 SWAT Conference in Brussels, Belgium

September 17-21, 2018

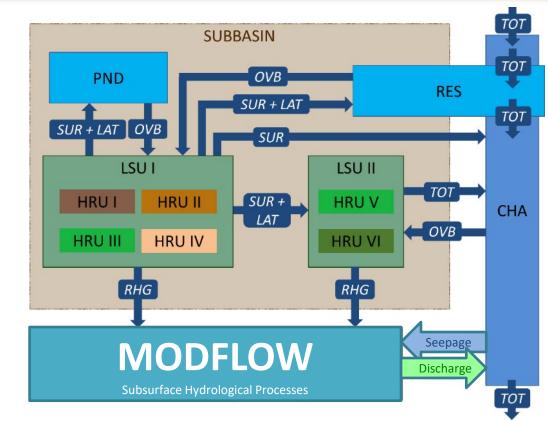


BACKGROUND AND TECHNICAL NEED

- **OVERVIEW**
- **SWAT+** (Bieger et al., 2017)
 - Completely restructured version of SWAT
 - SWAT+ Code is restructured as Spatial Object approach

 \circ New spatial objects can be defined for external models \circ SWAT+ can easily send output to and receive input from

the other models.



Bieger et al.: Introduction to SWAT+, a completely restructured version of the Soil and Water Assessment Tool. Journal of the American Water Resources Association (JAWRA), 2017.

OVERVIEW

BACKGROUND AND TECHNICAL NEED

Bieger et al.: Introduction to SWAT+, a completely restructured version of the Soil and Water Assessment Tool. Journal of the American Water Resources Association (JAWRA), 2017.

DBIECTIVE

METHOD

RESULT

ONCLUSION

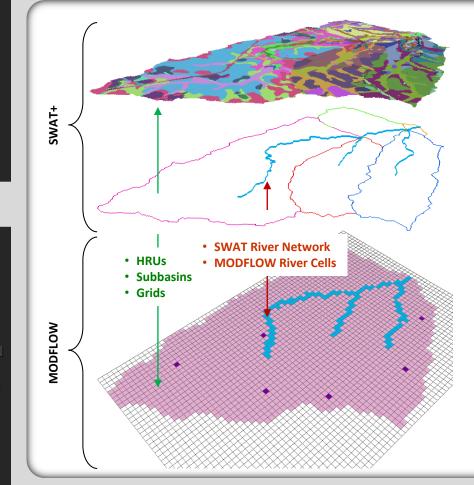
MAIN OBJECTIVE AND APPROACH

• Link SWAT+ with MODFLOW codes

OBJECTIVE

METHOD

RESULT


CONCLUSION

FUTURE WORK • Apply the coupled SWAT+ and MODFLOW codes to the Little River Experimental Watershed (LREW)

METHOD

METHOD: LINKING PROCEDURE

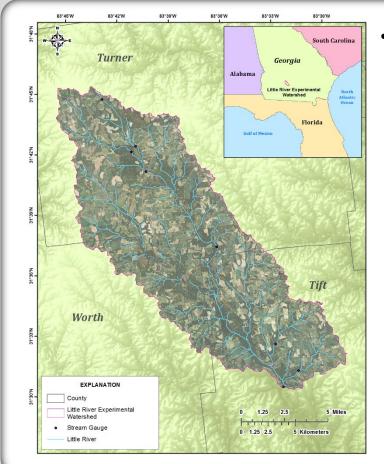
- The basic process of passing data between the models using "mapping" subroutines that relate HRUs to MODFLOW grid cells is the same as the process of the SWAT-MODFLOW model.
- SWAT+ hydrologic response units (HRUs) and sub-basins are spatially related to MODFLOW grid cells to enable mapping of recharge, evapotranspiration, and groundwater/surface water exchange between SWAT+ and MODFLOW.
- Due to the restructuring of the SWAT+ code, the River cells of MODFLOW are included as spatial objects that receive/provide water from/to SWAT+ stream channels.
- During model construction, the user can choose whether to use SWAT+ aquifers or MODFLOW to simulate groundwater processes.

METHOD: MODFLOW SPATIAL OBJECTS

• Conceptual Spatial Objects in SWAT+

		MODFLOW Object no.	MODFLOW Grid id.	Total out	Object Type	Fraction	Object id.
		1	428	1	cha	1.0	3
		2	429	2	cha cha	0.7 0.3	9 1
		3	565	1	cha	1.0	1
		4	701	1	cha	1.0	1
"object.cnt" file in SWAT+ Total objects: 8866		5	702	5	cha cha cha cha cha	0.1 0.5 0.2 0.1 0.1	2 33 65 49 18
	M	6	820	4	cha cha cha cha	0.2 0.3 0.4 0.1	152 146 110 34
		7	821	1	cha	1.0	9
		8	822	3	cha cha cha	0.6 0.3 0.1	134 92 158

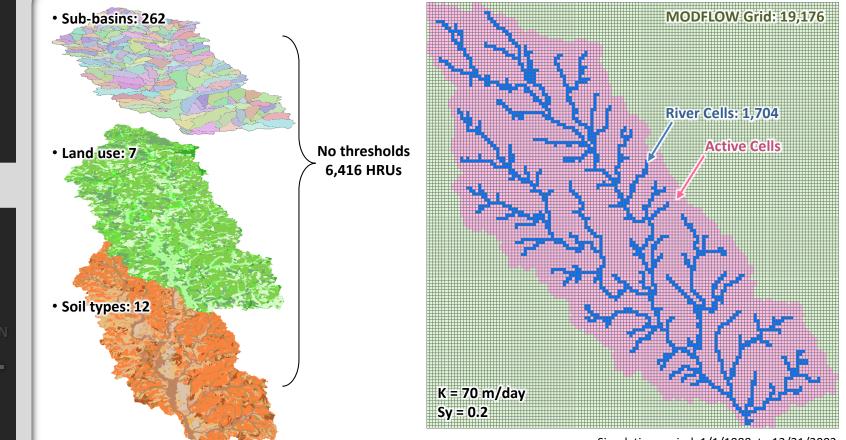
METHOD


RESULI

CONCLUSION

METHOD

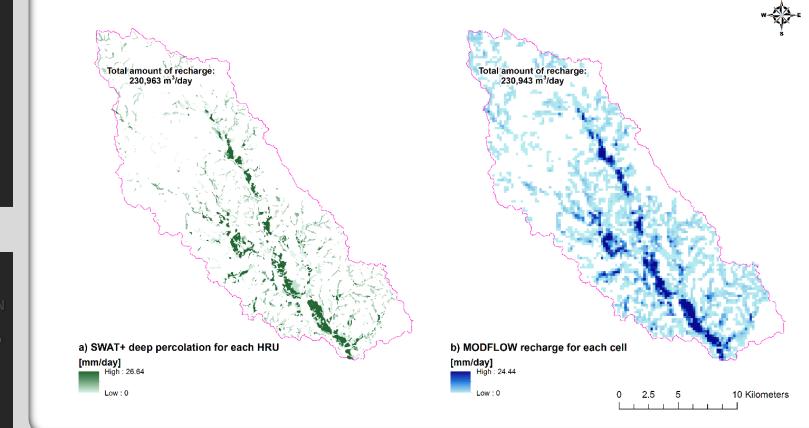
METHOD: STUDY REGION



- Little River Experimental Watershed (LREW)
 - Located in the Upper Suwannee River Basin in South-Central Georgia (Sheridan, 1997)
 - Overlies Trinity Aquifer (unconfined aquifer) /
 Area: 334 km²
 - The climate in the LREW is humid subtropical with long, hot, humid summers and short, mild winters (Bosch et al., 1999).
 - Bosch et al. (2006) estimate that the percentages of forest, agricultural land, urban areas, and water are 50, 41, 7, and 2%, respectively.

METHOD

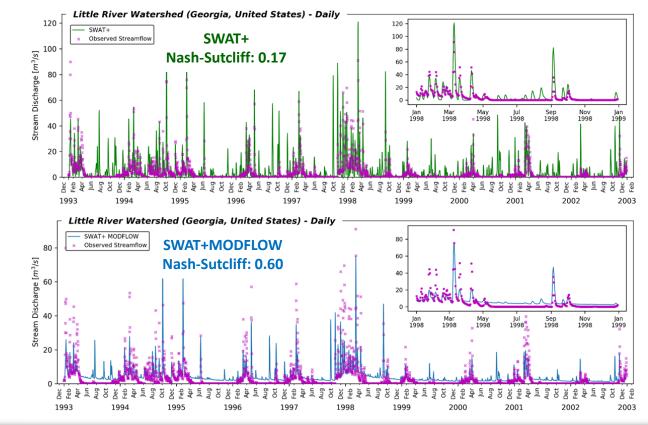
METHOD: MODEL CONSTRUCTION


Simulation period: 1/1/1988 to 12/31/2002

RESULT

RESULT: VERIFICATION OF MODEL

Comparison of Spatially-varing recharges (mm/day) between a) SWAT+ HRU deep percolation and b) MODFLOW recharge

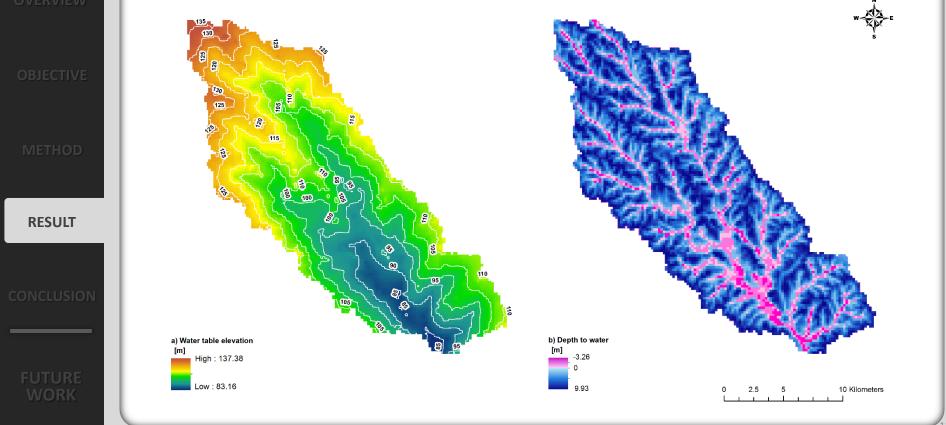


RESULT : COMPARISON OF HYDROGRAPH PLOTS AND STATISTICS

• Comparison of hydrograph plots and statistics (NS) between SWAT+ and SWAT+ MODFLOW simulations in the Little River watershed

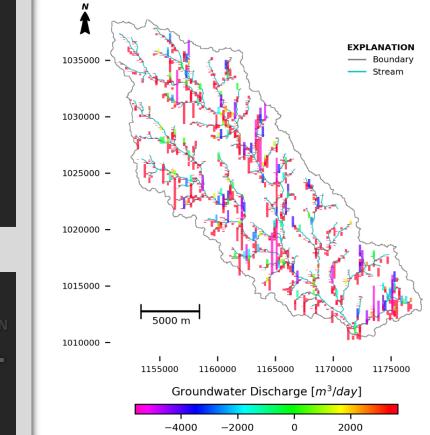
OBJECTIV

METHOD

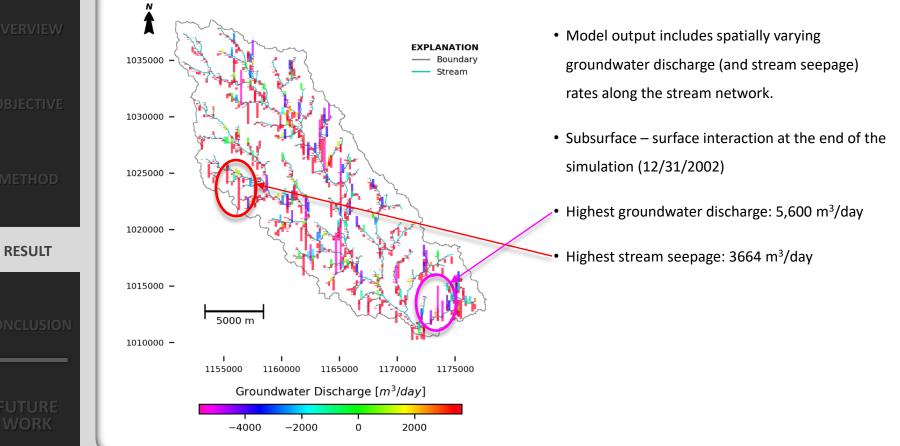

RESULT

ONCLUSION

RESULT: WATER ELEVATION AND DEPTH TO WATER


Water elevation and depth to water for MODFLOW grid in the Little River watershed at the first day of the simulation period (1/1/1988)

RESULT

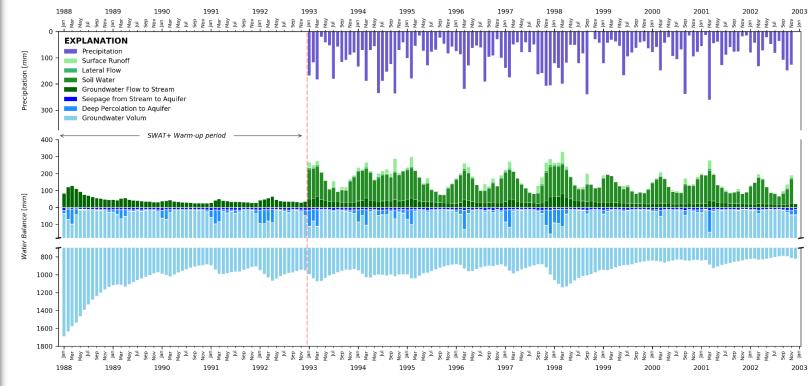

RESULT: INTERACTION BETWEEN SURFACE-SUBSURFACE

- Model output includes spatially varying groundwater discharge (and stream seepage) rates along the stream network.
- Subsurface surface interaction at the end of the simulation (12/31/2002)
- Highest groundwater discharge: 5,600 m³/day
- Highest stream seepage: 3664 m³/day

RESULT: INTERACTION BETWEEN SURFACE-SUBSURFACE

RESULT: INTERACTION BETWEEN SUDENCE_SUBSUDENCE - 01-01-2002 -1035000 -EXPLANATI 1035000 Bound Stream 1030000 -1030000 -1025000 -1025000 -1020000 -1020000 -1015000 -1015000 -5000 m 1010000 -1170000 1155000 1160000 1165000 1170000 11750 1155000 1160000 1165000 1175000 Groundwater Discharge $[m^3/day]$ Groundwater Discharge [m^3/day] Т -2000 2000 -40000 -10000-8000 -6000 -4000 -2000 2000 0

FUTURE WORK


RESULT

RESULT : MONTHLY WATER RESOURCE AVAILIABILTY

• Monthly water resource availability in the Little River watershed

Little River Watershed (Georgia, United States) - Water Balance - Monthly

OBJECTIVE

RESULT

ONCLUSION

CONCLUSION

- Linking SWAT+ with MODFLOW codes has been properly completed.
- Improvement of spatial representation of elements and processes
- More flexibility in defining spatial interactions of hydrologic objects
- Interaction between the two models more efficient than the previous SWAT-MODFLOW code
- Ease in its future code development
- Result from the coupled model has been improved.

CONCLUSION

FUTURE WORK

I. Implement RT3D to simulate subsurface solute transport

II. Implement Shallow water tables

III. Implement irrigation-pumping interactions

IV.Implement subsurface drains

V. Apply the coupled SWAT+ and MODFLOW codes to watersheds

FUTURE WORK

Thank you for your attention!

