

 +天大大地図※林林の回※林本米、米国※林 第回※林本米回

 ***米地回人×林本泉は林大大谷 お林米

 Research Laboratory for INtelligent system

 in Agro-hydrological Monitoring and

 Management (INAMM)

 Department of Irrigation Engineering, Faculty of Engineering at

Kamphaeng Saen, Kasetsart University

Simulation of Runoff Changes

based-on Land Use/Cover in Lam Pachi Basin by CA-Markov and SWAT Models

Ekasit Kositsakulchai Sitha Yodjaroen Yutthana Phankamolsil

September 2018

Outlines

- Introduction
- Study area: Lam Phachi Basin, western Thailand
- Methodology and Results
 - Land use projection by CA-Markov model
 - Runoff simulation by SWAT model

Introduction

- Surface runoff is a key component in hydrological cycle
- The quantification of runoff indicates water resources availabilities in a basin and provides important information for water management
- Land use/land cover are one of main factors affecting runoff processes
- This work is part of a research program
 - Integrated Water Resource Management of Lam Pachi Basin
 - Land use change, runoff, water use, drought, flood, erosion

Objectives

 This work aimed to projecting the effects of land use/land cover change (LULCC) on runoff yield in Lam Pachi basin, Western Thailand

Study Area: Lam Phachi Basin

Lam Pachi Basin, Thailand

- Watershed area 2543 km2
- Precipitation 1210 mm/yr (SW monsoon)
- Temperature 27.3°C (max-min: 35.9°C (Apr)- 19.8°C (Jan))

Methodology and Result Land use projection by CA-Markov model Runoff simulation by SWAT model

Methodology

- To develop CA-Markov model for spatially projection of future land use/land cover
- To develop SWAT-based hydrological model for evaluating the runoff response to the projected LULCC
- To simulate the impact of LULCC on runoff yield in the Lam Pachi basin by SWAT model.

Land Use Projection by CA-Markov

- Tool
 - MOLUSCE: Modules for Land Use Change Evaluation
 - QGIS plug-in
- Data
 - Land use data (Department of Land Development, DLD)
 - Auxiliary data

💋 MOLUSCE							_	ο×					
Inputs Evaluating correlation	Area Changes Tra	nsition Potential N	Modelling	Cellular Automata S	imulation Vali	dation Messag	es						
Define Samples													
Method Logistic Regression				-									
Artificial Neural Network (Mu Weights of Evidence	liti-layer Perceptron)												
Maxir Multi Criteria Evaluation	MOLUSCE								-	L X			
Neighbourhood 1 p			Arres Char										
	Inputs Evaluation	ng correlation	Area Cha	iges Transition Po	otential Modelling	Cellular Auton	ata Simulation	Validation	messages				
Pseudo R-squared (count) 0.9	Class statistics					sq. km.				-			
	Class color			Δ	%	%	∆ %						
	1 95	50.70 sq. km. 1	1014.09 sc										? ×
	2 14	450.33 sq. km. 1	399.09 sc	Search									
	3 83	3.38 sq. km. 6	58.25 sq. k	+ MergeLines									
	4 69	9.06 sq. km. 6	58.43 sq. k	MetaSearch Ca	talogue Client			🚩 This plu	ıgin is trusted				
	5 20	0.91 sa. km. 2	4.51 sa. k	 Midvatten 				MOLU					2
	Transition matrix			🚖 Minkowski dime	nsion calculator			MOLU	JUSCE				
	Tansidor madrix			🌟 mmqgis				Diveis are	uidee e cet	of planithms f	an land usa sha		ations
	1 2	2 3	4	X 🕸 MOLUSCE				Flugin pro		E MCE There i	or ianu use ciia s also validatioi	nge simu nge simu	auons
	1 0.957138 0.010	0955 0.014257 (0.014829	mongo_memor	izer			statistics	MN, LK, WO	L, MCL, MCL		i using ka	ppa
	2 0.039514 0.95	5919 0.001075 (0.003056	MongoConnect	tor			stausues.					
	3 0 301930 0 01	6968 0.626139 0	0.030051	🚖 move				Modules for L	Land Use Chang	ge Simulations			
	4 0 306367 0 00	0122 0.000204	0.604444	MTOPOpenDat	а								
	4 0.290207 0.00	9125 0.009564 0	0.004444	Multi Ring Buth	er Hulffan			1 2 2 2 2 2	61 rating vot	e(s), 33965 downloa	ads		
	5 0.057335 0.01	1364 0.013602 0	0.006026	Multicate	burrer								
				Multiline Join				Category: Ra	aster Jand use planni	ina			
				Multinart Solit				More info: hc	omenade bud	tracker code reno	sitory		
		L. L.	Update tal	Multiple Laver !	Selection				unopogo pog		<u>bicory</u>		
				Multiple Layers	Edit Nodes			Author: Next	tGIS				
				🖕 multiPrint									
			_	📥 MultiQml				Installed vers	sion: 3.0.13 (in	C:\Users\ekasit\.qg	is2\python\plugins\	molusce)	
					Analyzer			Available ver	rsion: 3.0.13 (in	i QGIS Official Plugin	Repository)		
				🚖 Mutant				changelog:					
				hySQL Importe	er			3.0.11:					
				🚖 Natural Earth P	Raster			* Check if In	nit and Final sta	te raster are nomina	al		
				☆ NatusferaQGIS	5								
				🌟 navidata.pl ge	ocoder								
				NetCDF Brows	er								
				🚖 Networks									
				hew layers to	the top		÷	Upgrade all			Uninstall plugin	Reinstall	plugin
				- New Memory I	500F								
												Close	Help

Modules for Land Use Change Evaluation

CA/Markov model

- Convert vector land use data into raster format with grid size of 60 m
- Reclassify into 5 main group: agriculture, forest, built-up area, water, miscellaneous
- Driven forces: topography (slope), transportation (distance from road), neighbor (distance from existing built-up area)
- Transition probability matrix : land 2008 vs land 2015 (step of 7 year)
- Transitional potential modeling by logistic regression: 3 driven-force
- Future projection of land use change by Monte-Carlo Cellular Automata technique with 5 iterations: 2015, 2022, 2029, 2036, 2043, 2050

Land use map of Lam Phachi basin

Reclassified into 5 main classes

Area Changes

KU

KASETSART

Transition probability matrix or Markov matrix

np	uts Eva	aluating co	rrelation	Area Ch	anges	Transition P	otential Modelling	Cellular Auto	mata Simulation	Validation	Messages		_
las	s statistics							sq. km.					
	Class colo	r				Δ	%	%	∆ %				
1		950.70	sq. km.	1014.09 so	ą. km.	63.39 sq. km.	36.929277222	39.3917231388	2.46244591681				
2		1450.3	3 sq. km.	1399.09 so	ą. km.	-51.24 sq. km.	56.337277759	54.3470721659	-1.99020559305				
3		83.38 s	q. km.	68.25 sq. l	km.	-15.13 sq. km.	3.23883865518	3 2.65123017416	-0.587608481028				
4		69.06 s	q. km.	68.43 sq. l	km.	-0.63 sq. km.	2.6824145366	2.65794250331	-0.0244720333603	5			
5		20.91 s	q. km.	24.51 sq. I	cm.	3.60 sq. km.	0.8121918271	0.95203201781	0.13984019063				
irar	nsition matr	ix											
	1	2	3	4	5								
1	0.957138	0.010955	0.014257	0.014829	0.002	821			1	P. P.	_a P ₄	1	
2	0.039514	0.955919	0.001075	0.003056	0.000	437				1111	.2 ··· 1 11	1	
3	0.301930	0.016968	0.626139	0.030051	0.024	913	D —	(D.)		$P_{21}P_2$	₂₂ P ₂₁	1	
4	0.296267	0.009123	0.009384	0.684444	0.000	782	r –	(r _{ij})	· -				
5	0.057335	0.011364	0.013602	0.006026	0.911	674				P _{n1} P _n	₂ P _{nr}	n	
_													

Land Use Change 2008-2015

Land Use	2008	2015	Diff.	% Area	% Area	%
	(km2)	(km2)	(km2)	2008	2015	Different
Agriculture	1092.51	1087.29	-5.22	39.04%	38.85%	-0.19%
Forest	1591.44	1536.75	-54.69	56.87%	54.91%	-1.95%
Misc.	74.57	73.75	-0.82	2.66%	2.64%	-0.03%
Built-up	18.34	75.52	57.18	0.66%	2.70%	2.04%
Water	21.75	25.31	3.56	0.78%	0.90%	0.13%

Transition Matrix

			2015		
Land use	Agriculture	Forest	Misc.	Built-up	Water
Agriculture	91.50%	1.06%	2.19%	4.95%	0.31%
Forest	3.82%	95.74%	0.11%	0.29%	0.04%
Misc.	30.82%	1.66%	63.53%	1.98%	2.01%
Built-up	14.39%	0.80%	1.79%	82.92%	0.10%
Water	5.81%	1.09%	1.31%	0.76%	91.03%

Driving factor data

Define Samples			ciulai Automata Sinu		messayes	
Method Logistic Regression		-				
Maximum iterations	100	Coef	ficients Standard	deviations P-va	lues	
Neighbourhood	1 px	₽ [1.0 → 1.0	1.0 → 2.0	1.0 → 3.0	1.0 → 4.0
Pseudo R-squared (count)	0.97400	β0	-0.604624673927	-0.147692130093	1.31562546169	1.3288893410
		β1	1.25298726961	0.315335410075	-0.159223390383	-0.415713120
	Fit model	β2	-0.883911323421	-0.74575860349	1.02770989878	0.9985011866
		β3	-0.0806739199222	1.1397055326	2.0394494421	1.0522085279
	1	β4	0.529572889642	0.236792246021	0.70042555212	1.5765403893
f(z) =		β5	-2.75658218777	-1.49387267774	-1.84376681674	-0.804887687
-(-)	$1 + e^{-z}$	<u>β6</u>	-0.567231682837	1.42400568535	1.26335541893	1.1036821508
		β7	1.33035681316	1.20308667648	1.91224280034	1.5186022789
		β8	0.54778007966	0.920446202301	0.780914727632	2.3723854043
$= \beta_0 + \beta_1 X_1$	$+ \beta_2 X_2 + \cdots + \beta_n X_n$	ρ ^{β9}	0.896591885834	-1.27470119325	-1.40251295077	-0.209603394
		β1(-0.687113849402	0.20970776532	0.885007076179	0.8772365339
		•	-1 47741060504	1 20157061901	1.71720670024	1.640040552

Transitional Potential Modeling Logistic regression

CA : Cellular Automata

Monte-Carlo Cellular Automata simulation

Projected Land Use (%)

Year	Land use				
	Agriculture	Forest	Misc.	Built-up	Water
2008	39.75%	56.34%	2.68%	0.42%	0.81%
2015	39.39%	54.35%	2.65%	2.66%	0.95%
2022	41.79%	52.78%	1.91%	2.73%	0.80%
2029	42.99%	51.87%	1.90%	2.75%	0.49%
2036	43.55%	50.84%	1.83%	2.69%	1.09%
2043	42.04%	51.27%	3.17%	2.69%	0.83%
2050	47.03%	46.74%	2.35%	2.79%	1.08%
2015-2050	+7.64%	-7.60%	-0.30%	+0.13%	+0.13%

Projected Land Use

- The result revealed that more than half of the Lam Pachi Basin covered by forest area.
- The CA-Markov model projected the future land use in the next 45 years.
 - Forest area would decrease about 7.6%
 - Agricultural area would increase at the similar rate.

Runoff Simulation by SWAT model

- Tool
 - SWAT model
- Data
 - Land use Department of Land Development (DLD)
 - + projected land use maps
 - Soil Department of Land Development (DLD)
 - DEM CGIAR-CSI SRTM 90m Digital Elevation Data
 - http://srtm.csi.cgiar.org/
 - Climate Thai Meteorological Department (TMD)
 - Streamflow Royal Irrigation Department (RID)

Observation stations

Soil texture

Model calibration and validation

- Calibration : monthly streamflow, 2010-2015
- Validation : 2005-2009

Parameter	Unit	Method	Initial Value	Range	Fitted Value
1. CN2.mgt	-	Relative	varied	-10% +10%	-9.55%
2. GWQMN.gw	mm	Absolute	1000	+0 +4000	+3582
3. SOL_AWC.sol	mm _{H2O} /mm _{soil}	Absolute	varied	+0 +0.4	+0.1455

Note:

- 1. CN2.mgt = Initial SCS runoff curve number for moisture condition II
- 2. GWQMN.gw = Threshold water level in shallow aquifer for base flow
- 3. SOL_AWC.sol = Available water capacity of the soil layer

Hydrometric	Calibration	(2010-2015)	Validation (2005-2009)		
Station	R2	NSE	R2	NSE	
K25A	0.818	0.647	0.821	0.504	
K17	0.880	0.772	0.846	0.711	
K61	0.894	0.792	N/A	N/A	
K 62	0.936	0.863	N/A	N/A	

Note: N/A = Observed data not available

Model performance indicators

Projected Basin Water Yield (mm)

	LU2015	LU2022	LU2029	LU2036	LU2043	LU2050
January	34.74	34.42	34.3	34.19	34.37	33.81
February	21.71	21.5	21.42	21.34	21.45	21.07
March	20.94	20.96	20.99	20.94	20.98	21.08
April	29.57	30.21	30.48	30.45	30.38	31.53
May	34.02	34.28	34.52	34.27	34.54	35.21
June	40.65	40.91	41.16	40.91	41.26	41.99
July	44.09	44.13	44.23	43.96	44.3	44.59
August	46.19	46.35	46.56	46.29	46.54	46.98
September	183.59	186.29	187.85	187.99	186.91	193.35
October	368.92	373.42	375.81	376.14	373.73	383.94
November	162.17	163.3	164.08	163.93	163.79	166.53
December	59 <mark>.6</mark> 4	59.16	59.11	58.85	59.27	58.64
Annual	1046.23	1054.93	1060.51	1059.26	1057.52	1078.72

Surface Runoff

- Minor changes in term of water yield at the basin scale.
- More changes could be observed at subbasin level.
 - 1. Agricultural land yielded more water than forest in high land
 - 2. Land conversion from forest to agriculture in sloped high-land resulted in increase of water yield
 - 3. Whereas the same conversion in flat low-land resulted in reduction of yield

Acknowledgement

- This work is part of an research project "Impacts of Land Use Change on Runoff and Sediment in Lam Pachi Basin" under the Research Program "Integrated Water Resource Management of Lam Pachi Basin"
- Funding of this research was provided by the Kasetsart University Research and Development Institute (KURDI) and the Kasetsart University Graduate School.

Thank you

