

Anastassi Stefanova stefanova@pik-potsdam.de

SWAT 2018 19-21 September / Brussels, Belgium

Assessement and comparison of socio-economic and climate change impacts on water resources in four European lagoon catchments

Case Study Areas Locations, Characteristics & Threats

Page 2

- Point source and diffuse pollution
- Innapropriate water management practices
- Climate change (e.g. lower freshwater inflow to the lagoon)

Tyligulskyi Liman

23

5240

515

10

Tyligul

Agriculture (80)

Chernozem (77)

-6 - 254

Vistula Lagoon

Pregolya & Pasleka

Agriculture (67)

Cambisol (38)

4035

20730

750

8

-27 - 308

Methodology Study Framework, SWIM & Climate Scenarios

*PIK: Potsdam Institute for Climate Impact Research

D

Methodology Socio-economic Scenarios

Business As Usual – a possible future based on past trends; assumes a positive trend in economic development, and its negative effects for the environment

Environment -

Crisis – shrinking of the local economy paired with environmental degradation Economy +

Managed Horizons economic growth comes along with the introduction of appropriate measures that are considered beneficial for the environment

Environment +

Set-aside – negative economic trend that has the potential to improve environmental conditions

Economy - `

Methodology Socio-economic Scenarios

Changes in [%]		Ria de	Aveir	0	Mar Menor				Tyligulskyi Liman				Vistula Lagoon			
	BAU	CRI	MH	SET	BAU	CRI	MH	SET	BAU	CRI	MH	SET	BAU	CRI	MH	SET
agriculture	-11	-16	-	-32	-14	-30	5	-15	-	-	-10	-30	1.4	-10	2	-50
fallow	300	1200	-100	600	1500	3000	-100	1500	-	New	-	New	-9	New	-	New
grassland	180	520	-100	-10	-	-	-	-	-	-	215	-	-6	-	-75	-
forest	-	-26	3	5	-	-20	5	10	-	-50	10	40	-3	-20	17	86
heather	-	-	-	-	-	-	-30	-	-	-	-	-	-	-	-	-
wetlands	-	-	-	-	-	-	-	-	-	-	-	-	-5	-	-67	-
point sources	-2	7	-8	-18	16	-10	5	-11	-8	-20	-50	-35	-10	-30	-40	-35
N _{min} - & P- fertilizer	5	-20	-15	-20	-	-20	-15	-20	-	-50	500	200		-10	100	10
N _{org} - fertilizer	-10	-20	15	20	-	-20	15	20	-	10	10	-10	-	-10	300	-
abstraction	6	-30	12	-15	-	-	-	-	-8	-30		-15	-	-	-	-
discharge	-	-	-	-	22	-20	7	-11	-	-	-	-	-	-	-	-
irrigation	-	-	-	-	-22	-45	5	-25	-	-	-	-	-	-	-	-
ponds	-	-	-	-	-	-	-	-	-	-	-50	-75	-	-	-	-

Methodology Socio-economic Scenarios - example maps

Discharge & nutrients under reference conditions

1

800

88

400

120

8

240000

Ļ

ļ 12000 3200

2

35

20

22

550000

27500

Ŧ

150

Э

35

2400

1200

 $l \circ$

Average annual discharges and nutrient loads for the reference period using climate scenario data, shown as boxplots and observed climate data, shown as dots. The whiskers represent the min/max values, boxes the 25th/75th percentiles and thick lines the median values of SWIM outputs.

On the left: Q_{av} (mean flow), Q₅₀ (median flow), Q₉₀ (low flow), Q₁₀ (high flow), Q_{dif} (winter flow), Q_{mam} (spring flow), Q_{iia} (summer flow) and Q_{son} (autumn flow)

On the right: NO_3 -N (nitrate nitrogen), NH_4 -N (ammonium nitrogen) and PO₄-P (phosphate phosphorus) loads

Changes in the average, median, high & low flows

Average annual changes in discharge (Q_{av} mean discharge, Q_{50} – median discharge, Q_{90} -low flow and Q_{10} -high flow) for each socio-economic scenario (BAU, CRI, MH and SET) with (in blue) and without (in grey) climate change shown as boxplots. In grey: driven by the reference climate. In blue: for the scenario period (2011–2040) compared to the reference period (1971-2000)

Changes in major water cycle components – examples of spatial variability

Results Changes in major nutrient loads

Long-term average annual changes in nutrient loads (NO_3 -N, NH_4 -N and PH_4 -P) for four socio-economic scenario (BAU,CRI, MH and SET) shown as boxplots with (in colour) and without (in grey) climate change. In grey: driven by the reference climate. In colour: for the scenario period (2011–2040) compared to the reference period (1971–2000).

Changes in nutrient transformation & transportation processes – examples of spatial variability

Flows simulated with scenario climate on average higher than under observed climate, except for intensely managed Mar Menor catchment

Simulated impacts correspond well to precipitation trends in the two relatively natural catchments of Ria de Aveiro and Vistula Lagoon

In intensily managed Mar Menor catchment socio-economic scenarios determine direction of change

In strongly regulated Tyligulskyi Liman catchment socio-economic scenarios have a notable impact which is reversed by climate change

Summary

Results of water quality assessment very heterogeneous

In Ria de Aveiro catchment socio-economic scenarios intensify decreasing trend in NO_3 -N an PO_4 -P but do not influence NH_4 -N

In Vistula Lagoon catchment socio-economic scenarios cause different trends in NO_3 -N, NH_4 -N and PO_4 -P and climate change has little additional impacts

In Mar Menor catchment NO₃-N (mainly from diffuse pollution) is impacted equally strong by climate change and socio-economic scenarios, whereas NH_4 -N and PO₄-P (mainly from point source pollution) affected only by socio-economic scenarios

In Tyligulskyi Liman catchment socio-economic scenarios able to decrease nutrients input to the lagoon but climate change adds big uncertainty to results (high disagreement among climate scenarios)

Structural and parameterization uncertainties of climate and hydrological models

Data availability and quality for model set-up and calibration

Climate scenarios range and reliability of regional climate scenarios

Plausibility and static character of socio-economic scenarios

Conclusions

The implications of potential socio-economic changes can intensify, weaken or even reverse the effects of global warming

The heterogeneity of results (across catchments and variables) demonstrates the uniqueness and complexity of each CSA

→we cannot formulate specific management recommendations at pan-European level, as initially intended

 \rightarrow importance of a regional approach in climate change studies when these are used to provide a scientific basis for adaptation/mitigation strategies

Thank you for your attention

Anastassi Stefanova stefanova@pik-potsdam.de

SWAT 2018 19-21 September / Brussels, Belgium

Methodology

Calibrated and validated SWIM models

Catchment	Q	[m³ s⁻¹]		NSE	PBIAS
Rivers	obs.	SWIM	period		
Ria de Aveiro					
Águeda	6.5	6.6	01/02-12/05	0.8	5.6
Cértima	4.6	5.0	01/02–12/05	0.8	-8.0
Vouga	22.8	22.6	01/02–12/05	0.8	0
Mar Menor (biv	veekly tin	ne step)		r²=	
Albujon	5.5	5.5	10/02–02/04	0.7	0.1
Tyligulskyi Liman (I	monthly ti	me step)		
Tyligul	0.6	0.6	01/84–12/88	0.9	0.4
Vistula Lagoon					
Pasleka	18.8	17.6	01/07–12/09	0.7	-12.9
Pregolya	80.0	80.5	01/83–12/96	0.7	-0.6

Catchment	NO ₃	-N [mg	[⁻¹]	NH ₄ -N	l [mg l-1	1	PO₄-P [mg l⁻¹]			
River	obs. SWIM period		obs.	SWIM	period	obs.	SWIM	period		
Ria de Aveiro										
Antua	4.58	5.26	01/03–12/09	0.64	0.64	01/02-12/09	0.40	0.74	01/02–12/07	
Vouga	1.21	1 1.18 01/02–12/09		0.15 0.22		01/06-12/09	0.03	0.03	01/03–12/09	
	NO ₃ -N [t a ⁻¹]			NH ₄ -N	[t a ⁻¹]		PO ₄ -P [t a ¹]			
	obs.	SWIM	period	obs.	SWIM	period	obs.	SWIM	period	
Mar Menor										
Albujon	154	113	02/03-02/04	35	30	10/02-02/04	2.54	2.57	10/02-02/04	
Tyligulskyi Liman	in									
Tyligul	4.57	4.53	01/01–12/07	2.52	2.41	01/01–12/07	1.94	1.94	01/01–12/07	
Vistula Lagoon										
Sum of 9 rivers	4384	4540	01/80–12/09	3024	2235	01/80–12/09	462	424	01/80–12/09	

Changes in water cycle components – annual means

		Ria de Aveiro				ľ	Menor		Tylig	yi Liman		Vistula Lagoon					
		ses only		combined		ses only		combined		ses only		combined		ses only		combin	ed
		mm a ⁻¹	%	mm a⁻¹	%	mm a ⁻¹	%	mm a⁻¹	%	mm a ⁻¹	%	mm a ⁻¹	%	mm a⁻¹	%	mm a ⁻¹	%
BAU	RUN	1.33	0	-37.04	-6	0	0	0	0	0	0	-2.08	-15	0.61	1	9.90	12
	GWR	-0.19	0	-55.96	-6	-2.03	-9	-2.30	-2	0	0	-3.12	-16	0.61	1	10.23	12
	ETa	1.26	0	-5.49	-1	-22.95	-5	-24.41	-5	0	0	-10.45	-2	-0.89	0	8.96	2
	ЕТр	0.27	0	68.95	7	-4.05	0	26.10	1	0	0	40.67	5	-0.07	0	14.90	1
CRI	RUN	2.86	1	-35.52	-6	0	0	0	0	0.27	0	-1.81	-14	-4.87	-5	4.42	6
	GWR	1.00	0	-54.77	-6	-3.80	-16	-4.06	-10	0.29	0	-2.83	-15	-4.89	-5	4.73	6
	ETa	-2.22	-1	-8.98	-2	-46.25	-9	-47.70	-9	-0.64	0	-11.08	-2	2.05	0	11.90	2
	ЕТр	1.86	0	70.54	7	-4.71	0	25.44	1	-3.92	0	36.74	5	1.57	0	16.54	2
МН	RUN	-0.11	0	-38.49	-6	0	0	0	0	-1.27	-4	-3.35	-19	0.10	0	9.32	12
	GWR	-0.09	0	-55.86	-6	0.37	1	0.11	10	-1.33	-4	-4.45	-20	1.67	0	9.72	12
	ETa	0.67	0	-6.09	-2	6.16	1	4.70	1	3.13	1	-7.32	-2	-0.40	0	11.52	2
	ЕТр	-0.17	0	68.51	7	-3.19	0	26.97	1	7.71	1	48.38	6	0.10	0	14.57	1
SET	RUN	4.61	1	-33.76	-6	0	0	0	0	-3.78	-12	-5.86	-25	-24.40	-25	-15.22	-17
	GWR	0.01	0	-55.76	-6	-1.98	-9	-2.24	-1	-3.89	-12	-7.01	-26	-24.50	-25	-14.88	-17
	ETa	4.75	1	-2.00	0	-26.02	-5	-27.48	-5	5.57	1	-4.88	-1	27.96	5	37.81	7
	ЕТр	0.51	0	69.18	7	-4.05	0	26.10	1	3.06	0	43.73	6	5.00	1	19.96	2

Climate scenario reliability Evaluation of precipitation projections

Comparison of climate scenario data for the past with station data from the lagoon catchments

Climate scenario reliability Seasonal dynamics for precipitation – Ria de Aveiro

Mean monthly precipitation

$$MMP_{o,i} = \frac{\sum_{1}^{N} P_{o,i}}{N}$$
$$MMP_{s,i} = \frac{\sum_{1}^{N} P_{s,i}}{N}$$

where P is precipitation, o represents observed data, s - scenario (s1 to s15), i – month (1 to 12) and N- Number of years for comparison

Difference in mean monthly precipitation

 $DMMP_{s,i} = MMP_{s,i} - MMP_{o,i}$

Average of normalized difference of mean monthly precipitation

$$ADMMP_{s} = \frac{\sum_{1}^{12} \left| \frac{DMMP_{s,i}}{MMP_{o,i}} * 100\% \right|}{12}$$

UFZ

Differences between observed and projected mean monthly values for precipitation

Climate scenario reliability Seasonal dynamics for precipitation

Mar Menor Catchment

Tyligulskyi Llman Catchment

Observed (obs) and projected seasonal dynamics for precipitation

Differences between observed and projected mean monthly values for precipitation

%

Climate scenario reliability Seasonal dynamics for precipitation – Vistula Lagoon

station Chernyakhovsk

station Olzstyn

S1 120 120 S2 S2 S3 S4 S5 S6 S7 S8 S9 S3 S4 S5 S6 S7 80 8 [mm] [mm] 09 60 S8 S9 S10 S10 4 4 S11 S11 S12 S13 S12 20 20 S13 S14 S14 0 0 S15 S15 obs obs 2 8 9 10 12 2 3 10 1 11 1 5 9 11 month month

Observed (obs) and projected seasonal dynamics for precipitation

Climate scenario reliability Seasonal dynamics for precipitation –

station Balsapintada

Observed (obs) and projected seasonal dynamics for precipitation

Differences between observed and projected mean monthly values for precipitation

