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Overview of Presentation
• Description of FACETS project

• Statistical vs. dynamical downscaled methods
•
• Role of SWAT within FACETS including use of 

HAWQS modeling system 

• Discussion of example initial SWAT output



Underlying Reason for Study

• Concern of U.S. Dept. of Energy: Given 
the large variety of dynamical and 
statistical downscaling approaches and 
products, how do we assess their relative 
merits and suitability for a given 
purpose?



FACETS Project

• FACETS: Framework for Assessing Climate’s Energy-
Water-Land nexus by Targeted Simulations

• Overall goal: produce and disseminate a suite of 
metrics and analysis tools that can be used to 
evaluate different types of climate models and 
downscaling methods

• Consortium: Iowa State Univ., NCAR, Cornell Univ., 
UCLA, PNNL, Texas A&M Univ.



FACETS Project

• Evaluation of climate downscaling techniques:
1) metrics that include statistical measures of climate model 

performance (skill)
2) phenomena-based diagnosis of inter-related model biases 

and multi-scale processes contributing to the phenomena
3) metrics relevant to the energy-water-land (E-W-L) nexus

• Role of SWAT within FACETS:
1) translate physical model output into metrics that are directly 

relevant to the E-W-L nexus
2) produce indicators that provide further insight into factors 

influencing the performance of specific climate models



Global climate models (GCMs)

• Main tool for projecting future climates.

• Solve fluid dynamical equations for atmospheric and oceanic 
circulation and thermodynamics.  Includes representations of 
processes that cannot be solved directly (parameterizations).
– Radiative transfer, land surface processes, sea ice, 

biogeochemical cycles, etc.
– GCMs do not directly use observed data as input.
– Numerical solution methods require dividing the world 

into a grid.  Computational constraints dictate the size of 
the grid cells, typically 1o to 2o latitude / longitude.



All of this is less than one grid cell in a 
global climate model



The need for downscaling

• Climate impacts often take place on scales much smaller than 
the grid cells of global climate models.

• Coarse resolution models cannot properly include many 
geographic features and atmospheric processes that have 
hydrologic consequences (coastal mountains, thunderstorm 
systems, etc).

– This is one reason GCMs give too much light precipitation 
and too little heavy precipitation.

• Downscaling is the production of finer-resolution information 
from coarse-resolution GCM results.



There are two broad approaches to 
downscaling

• Dynamical downscaling:  Run a finer-resolution dynamical 
model (similar to the global model) but over only a limited 
area of interest.
– The fine resolution model is supplied with data from the 

global model at its lateral boundaries.
– There are several widely-used dynamical downscaling 

codes.

• Statistical downscaling: Develop statistical relationships 
between model output variables and observed quantities.
– Many different statistical downscaling approaches exist, 

using different assumptions and statistical methods.



Comparison of statistical and 
dynamical downscaling

• Statistical downscaling: 
+  Fast, allows many realizations
+  Parsimonious variable set
+  Should match observed climate, at least for training period
– Limited by availability of observations
– Results may not be physically consistent
– Statistical relationships may not apply in future climate

• Dynamical downscaling:
+  Basis in fundamental conservation laws 
+  Physically consistent
+  Can produce any atmospheric, oceanic or land state variable
– Not constrained to reproduce observed climate
– Very computation intensive (weeks-months per simulation) 

with very large output volume (10s-100s of GB)



The role of SWAT in FACETS
• Evaluation of model results (including downscaled results) 

usually focuses on a single variable such as precipitation or 
temperature.

• SWAT can be used to integrate model skill for multiple 
variables at multiple time and space scales.
– Run SWAT using different sources of downscaled climate 

data and compare results for streamflow, etc.   SWAT 
also produces results applicable to DOE's interest in the 
energy-water-land nexus.

• SWAT is not computationally burdensome, but human 
effort is needed to set up and run SWAT.  HAWQS gives a 
path to reduce this effort.



Hydrologic and Water Quality System 
(HAWQS)

• A national watershed and water quality assessment 
system for the U.S. 

• Versions also exist for Poland & Brazil (SUPer)
• SUPer website: https://super.swat.tamu.edu/

• Cooperative project of the:
• U.S. Environmental Protection Agency
• USDA-ARS Grassland Soil and Water Research Lab
• AgriLIFE Research, Texas A&M University

• HAWQS 1.0 released Sept. 2017, currently developing 2.0
• Website: https://epahawqs.tamu.edu/ 



HAWQS vs. Standard Development of 
SWAT Simulations

• Automatic data processing
• Internet based interface
• More efficient

• Speeds up model setup
• Minimal computer requirements
• Multiple user access



HAWQS On-line Structure

• Front-end web and desktop 
interfaces for users

• Middle-tier servers for 
handling user requests and 
responses

• Back-end database holds all 
SWAT related datasets and 
SWAT model 



HAWQS Watershed Delineations

• Designed for continental USA (contiguous 48 states)
• HAWQS users select outlet of the watershed based on HUC 

(Hydrologic Unit Code)
• Currently HAWQS projects are defined based on 

hydrological boundaries

• HAWQS watershed scale
• 8 digit HUC (~1,800 sq km)
• 10 digit HUC (~600 sq km)
• 12 digit HUC (~100 sq km)



Testing of SWAT within HAWQS
• Typical calibration approach to match observed data 
• ~100 sites: flow, sediment, total N and P
• Additional testing has been initiated 



Hydrologic and Water Quality System (HAWQS)

• On-line interface to SWAT that reduces need for pre-
processing.  Developed by R. Srinivasan at Texas A&M.

• Can execute simulations for a range of watershed sizes 
throughout CONUS from local-regional scale to huge systems; 
e.g. Mississippi River (8-, 10- or 12-digit scales).



LOCA Statistical Downscaling 
(Localized Constructed Analogs)

• LOCA: Technique for downscaling climate model 
projections of the future climate

• Provides better estimates of extreme days, constructs 
more realistic depiction of the spatial coherence of the 
downscaled field, and reduces the problem of 
producing too many light-precipitation days

• Website:  http://loca.ucsd.edu/ 



Initial SWAT simulations in support of FACETS

• LOCA downscaled fields from FACETS GCMs (GFDL-
ESM2M, HadGEM2-ES and MPI-ESM-LR)

• Dynamically downscaled: ERAI_12km and ERAI_25km 
(12 and 25 km2 grids within RegCM4 model)

• Upper Mississippi River Basin and Ohio-Tennessee 
River Basin
– Have simulated both baseline periods (1991-2010) 

and future climate periods using both downscaling 
methods

– Only example UMRB baseline (contemporary 
climate) results discussed here



Example SWAT Hydrologic Indicators: UMRB 
Long-term Means and Deviations from Means
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Example SWAT Hydrologic Indicators: 
UMRB Standard Deviations 
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Example SWAT Hydrologic Indicators: 
UMRB Minimum Values
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Example SWAT UMRB Nitrogen 
Indicators
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More Work Needed Regarding 
Development of SWAT Metrics

• Exact suite of SWAT metrics that will be developed as 
part of FACETS still need to be determined

• Interest in capturing phenomena such as low level 
jets (Midwest region) or atmospheric rivers (west 
coast) via SWAT metrics

• Mississippi River Basin model developed in HAWQS 
will be focus of next phase of SWAT work
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