

Climate Change Impacts on Glaciers and Runoff in Alpine catchments

Saeid A. Vaghefi

Eawag: Swiss Federal Institute of Aquatic Science and Technology University of Geneva, Institute for Environmental Science

Outline

- 1. SWATCH21 project
- 2. Importance of glacier retreat modeling in determination of runoff at basin scale (Why?)
- 3. How to quantify the glacier melt (How?)
- 4. The "Glacier Evolution Runoff Model" (GERM) + SWAT
- 5. Aletsch Glacier in Rhone river basin, Switzerland
- 6. Calibration protocol for discharge in mountainous catchments
- 7. Climate change impact on Aletsch Glacier

SWATCH21 Project

2017-2020, Founded by SNF

SWATCH21 Deliverables and Objectives

- ✓ Data collection for SWAT to model spatial distribution of water resources in Switzerland
- Build, calibrate and validate a hydrologic model of Switzerland with uncertainty analysis
- Quantify the impact of land use and climate change on water quantity, water quality, biodiversity and ecosystem services
- **√** ...
- ✓ Modeling the glaciers retreat and evolution in Swiss Alps

SWATCH21 team

Prof. Dr. Anthony Lehmann University of Geneva

Prof. Dr. karim Abbaspour Eawag

Prof. Dr. Daniel Farinotti ETHZ

PD. Dr. Christian Huggel University of Zurich

Dr. Saeid Vaghefi University of Geneva Eawag

Martin Lacayo University of Geneva

Marc Fasel University of Geneva

Pablo Timoner University of Geneva

Why to quantify glacier melt?

Global water cycle

Ice caps and mountainous glaciers:

- ◆ contain less than 1% of all global ice (Meier et al. 2007)
- ♦ cover 734,400 km² of the Earth (Gardner et al. 2013)
- ♦ correspond to one-third to on-half of global sea-level rise in last decades(global)
- ♦ in the European Alps (ca. 2050 km² on 3800 glaciers) produce an annual average runoff volume of 5.28 ± 0.48 km³ (Farinotti et al. 2009) (regional)

Hydrological Cycle

Units: Thousand cubic km for storage, and thousand cubic km/yr for exchanges

Fig. 1. The hydrological cycle. Estimates of the main water reservoirs, given in plain font in 10³ km³, and the flow of moisture through the system, given in slant font (10³ km³ yr⁻¹), equivalent to Eg (10¹⁸ g) yr⁻¹.

Trenberth et al. (2006)

Glacier retreat

♦ Ice melt contributes to the runoff especially in Summer time when other sources of water are limited.

Video by Prof. Dr. Hong Yang (2018), Iceland

Why to quantify ice melt contribution?

- **♦** A contributor to the runoff
- ♦ Fluctuations of ice melt water lead to harmful environmental impacts

Missing meltwater

♦ water shortages, and crop failure (Carey et al., 2017; Huss et al., 2017;
Yang et al., 2014).

Increasing meltwater

♦ lake expansion, changes in seasonal hydropower generation (Gaudard et al., 2018; Schaefli et al., 2019), and overflowing of recreational areas due to the rising water of the rivers

How to quantify Ice melt?

1. Physical based model

Clarke et al., 2015 Farinotti et al., 2012 Fitzpatrick et al., 2017 Huss et al., 2008 Huss et al., 2014

Model different physical processes

2. Statistical models

Koboltschnig and Schoner, 2011 Trachsel and Nesje, 2015 Zekollari and Huybrechts, 2018

Find correlation between glaciers signatures (such as area and volume) and runoff

3. Process-based numerical models

Geuzaine and Remacle, 2009 Jouvet et al., 2009 Jouvet et al., 2011 Jouvet and Rappaz, 2014 Michel et al., 2013

Use different numerical methods such as Lagrangian or Eulerian to simulate changes of ice surface topography and generated runoff

4. Image processing and remote sensing approaches

Quiroga et al., 2013 Rastner et al., 2016

Study satellite images of different years

Hydrological modeling vs Glacier retreat modeling

- Glacier melt is not the only component in hydrological cycle,
- ◆ For discharge and crop yield we need rainfall, temperature, evapotranspiration, groundwater storage, and etc.
- ◆ Concurrent modeling of glacier evolution and hydrological systems is mainly there are three approaches for simultaneous modeling of glacier evolution and hydrological cycle

Which hydrologic model should be coupled to which glacier model?

Glacier Evolution Runoff Model (GERM)

◆ Has been widely applied to model the glaciers retreat, changes in topography and outline of glaciers, runoff generated by glacier melt and model the impact of climate change on glacier retreat

GERM Characteristics:

- ♦ Continuous time
- Physically based
- Distributed parameter
- Flexible basin discretization
- ◆ Climate drivers: Temperature and precipitation

Accumulation GERM

GERM

Touting the state of the state o

The daily generated runoff from ice melt (simulated by GERM) is added to the daily time series of flow of point sources in SWAT

Overlaying SWAT Sub-basins map with GERM grids

- ♦ Sub1
- 2,3,7,8,12,13
- **♦**Sub2
- 3,4,5,8,9,13,141,15
- **♦**Sub3
- 13,14,15,17,18,19,20
- 22,23,24,25,28,29
- + portion's of grids which are located in each sub-basin

Tools for automation of overlaying

♦ GERM daily **Accumulation** for each grid:

$$Psoild_i = P_{ref} \times (1 + C_{perc})[1 + \frac{Elev_i - Elev_{ref}}{1000}dp] \times Dsnow_i \times r_s$$

- P_{ref} : precipitation at reference location (mm)
- ♦ C_{perc}: correction factor for the gauge-catch deficit (Bruce and Clark 1981)
- ullet $Elev_i Elev_{ref}$: the elevation reference between the reference and considered location
- ◆ Dsnow_i: spatially distributed factor which account for snow redistribution processes (Tarboton et al. 1995, Huss et al. 2009)

$$T_{ave} \le -1 \rightarrow r_s = 1$$

$$T_{ave} \ge 1 \rightarrow r_s = 0$$

$$-1 \le T_{ave} \le 1 \rightarrow r_s = \frac{1 - T_{ave}}{2}$$

Daily Accumulation for each grid:

- ♦ Ablation is modeled with a distribution temperature-index approach
- f_m : melt factor
- \bullet r_{snow} or r_{ice} two distinct radiation factors for snow and ice
- \bullet $I_{pot,i}$: the potential direct clear sky solar radiation at grid cell i
- T_i : mean daily air temperature (C), for $T_i < 0$ not melts occures

♦ GERM annul update of surface topography and outline:

Huss et al 2010

♦ GERM Daily outputs

Daily generated runoff is calculated based on mass balance at each grid $Runof f_i = Accumulation_i - Ablation_i$

Flexible GERM Architecture

Study Area

♦Aletsch Glacier

♦Total catchment area: 196 km^2 ,

♦ Glacier area: 82 km²,

• Ice volume: 15 km^3 ice (20% of Swiss ice)

♦ Simulation: 1957-2010

Runoff simulation in Glacierized Catchments

Initial Simulation

What we want after calibration

Building a model

♦ Overlaying Sub-basin map and rater (50m grids) map to obtain list of all sub-basins with located grids inside

																								_
8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
40	41	42	43	44	45	46	47	48	49	150	51	52	2 ₅₃	54	55	56	57	58	59	60	61	62	63	
72	73	74	75	76	77	78	79	580	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	
104	105	106	107	108	109	110	111	113	113	114	115	116	117	118	119	20	121	122	123	124	125	126	127	·
136	137	138	139	140	14	142	143	144	145	146	147	148	149	150	151	152	153	54	155	156	157	158	159	•
168	169	170	171	172	173	174	₩5	176	77	78	79	180	181	182	183	184	185	186	187	188	189	190	191	
200	201	202	208	204	205	206	207	208	209	210	211	212	213	214	2/5	216	217	218	219	220	221	222	223	:
232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	:
264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	:
296	297	298	299	300	301	302	308	304	305	306	307	308	309	310	311	312	313	314	3 15	316	317	318	319	:
328	329	330	331	332	333	334	335	336	387	338	339	340	341	342	343	344	345	346	347	348	349	350	351	;
360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	:
392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	4)2	413	414	415	4
424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	940	441	442	443	444	445	446	447	4
456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	2
400	400	400	4	400	Mag	104	AND	406	407	400	400	500	Det 4	100	E	E04	ENE	546	E07	00	EO	E4	E44	

m

ess

Results

♦ Ice Thickness (1957-2009)

Years	Ice Volume (km3)	Ice Length (km)				
1957	21.8	23				
1999	18.2	21.4				
2009	16.4	20.2				

1. Original Run

2. Tlaps and Plaps (1)

3. Tlaps and Plaps (2)

4. Tlaps and Plaps (fixed)

• 5. Snow Parameters (1)

6. Snow Parameters (fixed)

▶ 7. General Hydrologic parameters (1)

8. General Hydrologic parameters (2) + glacier/springs

Impact of Climate Change on Aketsch Glacier retreat?

- ♦ 5 global GCMs, RCP8.5 (CMIP5) from ISI-MIP dataset available in SWAT format at www.2w2e.com
- ♦ (1950-2100) at 0.5 degree resolution
- ♦ Future 2010-2030, 2040-2060 and 2080-2100
- ♦ SWAT-formatted precipitation, max and min temperature

GCM	Scenarios	Institute
GFDL-ESM2M	RCP 8.5	NOAA/Geophysical Fluid Dynamics Laboratory (USA)
HadGEM2-ES	RCP 8.5	Met Office Hadley Centre (United Kingdom)
IPSL-CM5A-LR	RCP 8.5	Institute Pierre-Simon Laplace (France)
MIROC	RCP 8.5	AORI, NIES and JAMSTEC (Japan)
NoerESM1-M	RCP 8.5	Norwegian Climate Center (Norway)

Impact of Climate Change on Aketsch Glacier retreat?

Years	Ice Volume (km3)	Ice Length (km)
2020	12.4-14.7	20.9
2040	8.5-11	18.2
2080	4-7.5	10.2

♦ GREM annul update of surface topography and outline:

Huss et al 2010

♦ GREM Daily outputs

Daily generated runoff is calculated based on mass balance at each grid $Runoff_i = Accumulation_i - Ablation_i - Evapotranspiration_i$