

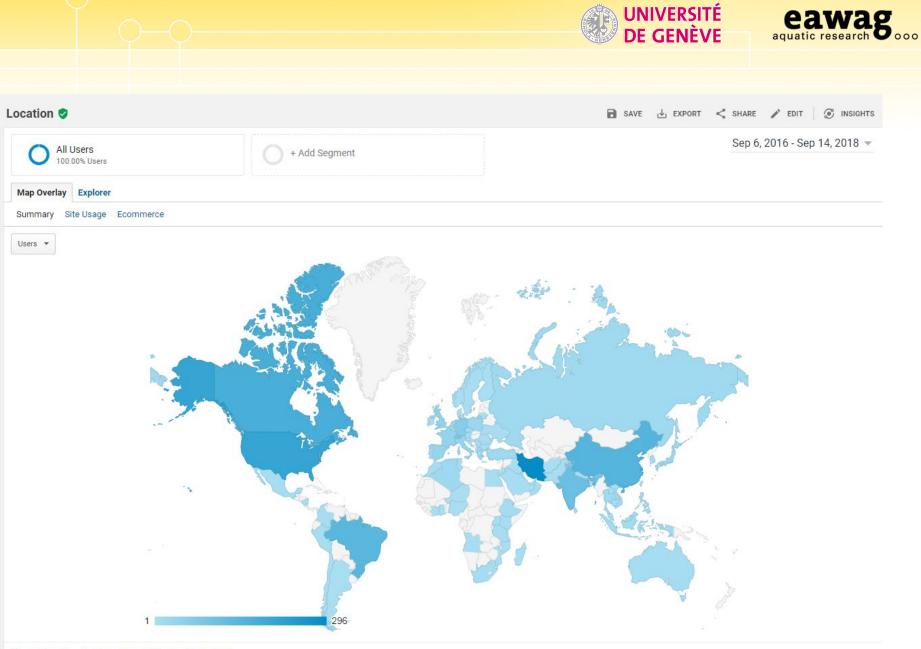
Using big data sets to combat climate change impacts

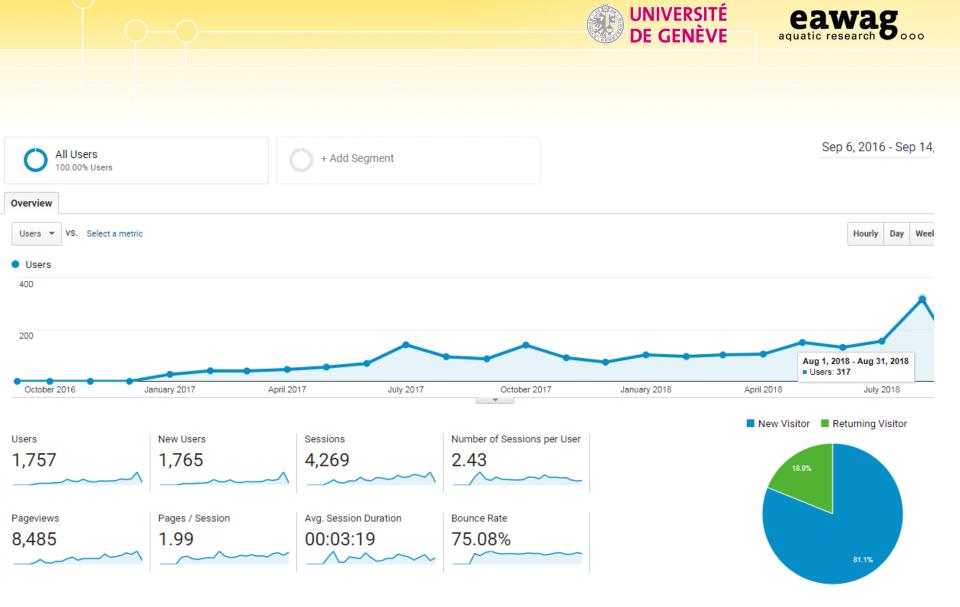
Eawag: Swiss Federal Institute of Aquatic Science and Technology University of Geneva, Institute for Environmental Science

Outline

- Climate Change Analysis Steps
- 2w2e
- Climate Change Toolkit (CCT)
- California Case Study

Steps in Climate Change Analysis


- Collect historical measured data
- Collect GCM climate change data (find, extract from NetCDF or other formats, reformat for SWAT, etc...)
- Downscale/bias correct climate change data
- Interpolating to finer resolution
- Run hydrologic model with future data
- Drought, Flood, economical, ... analysis


WWW.2W2e.com Www.2w2e.com Vervious Projects Data Contact Sign in Water Weather Energy Ecosystem Technology and Data Climate Change Data for SWAT model (CMIP5)

Select Area	Select Models	Select Scenarios	Select Data Type
From Latitude To Latitude From Longitude To Longitude	GCM1 GCM2 GCM3 GCM4 GCM5 ObservedData	scenario1 scenario2 scenario3 scenario4 historical	Precipitation Temperature

Extract and Download

Map



Country 😨	Users 🕐 🤟	New Users ?	Sessions (?)	Bounce Rate 🕐	Pages / Session	Avg. Session Duration	Goal Conversion Rate 🕜	Goal Completions ?	Goal Value ?
	1,757 % of Total: 100.00% (1,757)	1,771 % of Total: 100.34% (1,765)	4,269 % of Total: 100.00% (4,269)	75.08% Avg for View: 75.08% (0.00%)	1.99 Avg for View: 1.99 (0.00%)	00:03:19 Avg for View: 00:03:19 (0.00%)	0.00% Avg for View: 0.00% (0.00%)	0 % of Total: 0.00% (0)	\$0.00 % of Total: 0.00% (\$0.00)
1. 🔤 Iran	296 (16.12%)	280 (15.81%)	743 (17.40%)	67.97%	2.66	00:04:32	0.00%	0 (0.00%)	\$0.00 (0.00%)
2. 🔤 United States	211 (11.49%)	199 (11.24%)	317 (7.43%)	80.44%	1.79	00:02:07	0.00%	0 (0.00%)	\$0.00 (0.00%)
3. 🐏 Canada	175 (9.53%)	175 (9.88%)	590 (13.82%)	78.47%	1.47	00:03:10	0.00%	0 (0.00%)	\$0.00 (0.00%)
4. 🥙 China	151 (8.22%)	154 (8.70%)	242 (5.67%)	73.55%	1.98	00:02:41	0.00%	0 (0.00%)	\$0.00 (0.00%)
5. 🔯 Brazil	142 (7.73%)	142 (8.02%)	164 (3.84%)	85.37%	2.26	00:02:38	0.00%	0 (0.00%)	\$0.00 (0.00%)
6. 💶 India	111 (6.05%)	110 (6.21%)	226 (5.29%)	71.24%	2.18	00:03:03	0.00%	0 (0.00%)	\$0.00 (0.00%)
7. 🖸 Switzerland	88 (4.79%)	85 (4.80%)	598 (14.01%)	70.07%	1.84	00:04:37	0.00%	0 (0.00%)	\$0.00 (0.00%)
8. 🥅 Germany	61 (3.32%)	59 (3.33%)	120 (2.81%)	67.50%	1.94	00:03:41	0.00%	0 (0.00%)	\$0.00 (0.00%)
9. 📰 United Kingdom	40 (2.18%)	34 (1.92%)	148 (3.47%)	69.59%	2.26	00:04:09	0.00%	0 (0.00%)	\$0.00 (0.00%)
10. II France	38 (2.07%)	38 (2.15%)	55 (1.29%)	83.64%	1.55	00:01:33	0.00%	0 (0.00%)	\$0.00 (0.00%)
11. Ill Italy	35 (1.91%)	34 (1.92%)	52 (1.22%)	96.15%	1.06	00:00:13	0.00%	0 (0.00%)	\$0.00 (0.00%)
12. 🔄 Spain	34 (1.85%)	34 (1.92%)	63 (1.48%)	68.25%	2.54	00:04:31	0.00%	0 (0.00%)	\$0.00 (0.00%)
13. 💼 Poland	28 (1.53%)	27 (1.52%)	42 (0.98%)	73.81%	1.52	00:02:41	0.00%	0 (0.00%)	\$0.00 (0.00%)
14. 📧 Hong Kong	25 (1.36%)	24 (1.36%)	28 (0.66%)	82.14%	1.25	00:00:40	0.00%	0 (0.00%)	\$0.00 (0.00%)
15. 🖲 Japan	25 (1.36%)	22 (1.24%)	49 (1.15%)	67.35%	2.84	00:03:15	0.00%	0 (0.00%)	\$0.00 (0.00%)
16. 🚍 Netherlands	22 (1.20%)	18 (1.02%)	40 (0.94%)	67.50%	1.80	00:01:45	0.00%	0 (0.00%)	\$0.00 (0.00%)
17. 💽 Algeria	21 (1.14%)	20 (1.13%)	29 (0.68%)	79.31%	1.76	00:00:42	0.00%	0 (0.00%)	\$0.00 (0.00%)
18. 🙆 Turkey	20 (1.09%)	20 (1.13%)	34 (0.80%)	52.94%	6.06	00:11:12	0.00%	0 (0.00%)	\$0.00 (0.00%)
19. 💼 Russia	18 (0.98%)	18 (1.02%)	26 (0.61%)	61.54%	1.65	00:03:26	0.00%	0 (0.00%)	\$0.00 (0.00%)
20. 🖿 Czechia	17 (0.93%)	16 (0.90%)	22 (0.52%)	72.73%	1.45	00:02:27	0.00%	0 (0.00%)	\$0.00 (0.00%)
21. 💻 Thailand	17 (0.93%)	17 (0.96%)	20 (0.47%)	65.00%	2.85	00:03:13	0.00%	0 (0.00%)	\$0.00 (0.00%)
22. (not set)	15 (0.82%)	11 (0.62%)	18 (0.42%)	94.44%	1.11	00:00:05	0.00%	0 (0.00%)	\$0.00 (0.00%)
23. 🔚 Greece	13 (0.71%)	12 (0.68%)	22 (0.52%)	72.73%	2.36	00:04:17	0.00%	0 (0.00%)	\$0.00 (0.00%)
24. 🔰 Philippines	12 (0.65%)	12 (0.68%)	12 (0.28%)	91.67%	1.25	00:00:01	0.00%	0 (0.00%)	\$0.00 (0.00%)
25. 📧 Portugal	12 (0.65%)	12 (0.68%)	12 (0.28%)	91.67%	1.08	00:01:37	0.00%	0 (0.00%)	\$0.00 (0.00%)

Products

8

SWAT-CUP 2012

SWAT-CUP is a program for calibration of SWAT models. Read more

Download SWAT-CUP

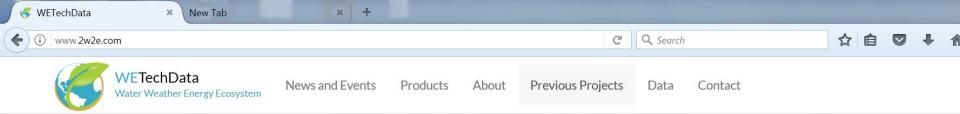
Climate Change Toolkit

Climate Change Toolkit (CCT) is a program, which handles all climate change analysis' tasks in one package. **Read more**

Download CCT

SWAT-MODSIM coupled model

The coupled SWAT-MODSIM model is a program that links the SWAT and MODSIM models for better integrated water resource planning and management. Read

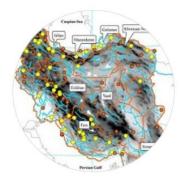

more

Download SM

Global ET observation

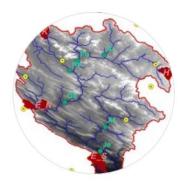
The main objective of this program and the linked database are to prepare a framework allow users to profit from MODIS-NASA available Actual Evapotranspiration (AET) observations to calibrate SWAT hydrological model. Read more

Download GlobalET


Previous Projects

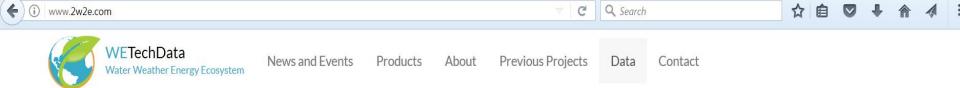
Europe project

A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model Read more



Iran Project

Assessing the impact of climate change on water resources in Iran Read more


Download Article

Karkheh River Basin Project

Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran **Read more**

Download Article

We have provided the necessary data for building a SWAT model of Global, Iran and Karkheh River Basin.

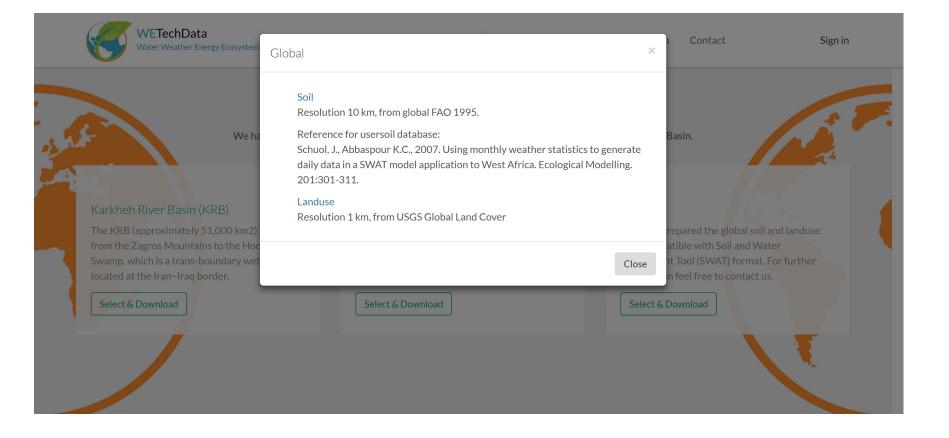
Karkheh River Basin (KRB)

The KRB (approximately 51,000 km2) stretches from the Zagros Mountains to the Hoor-Al-Azim Swamp, which is a trans-boundary wetland located at the Iran–Iraq border.

Select & Download

Iran

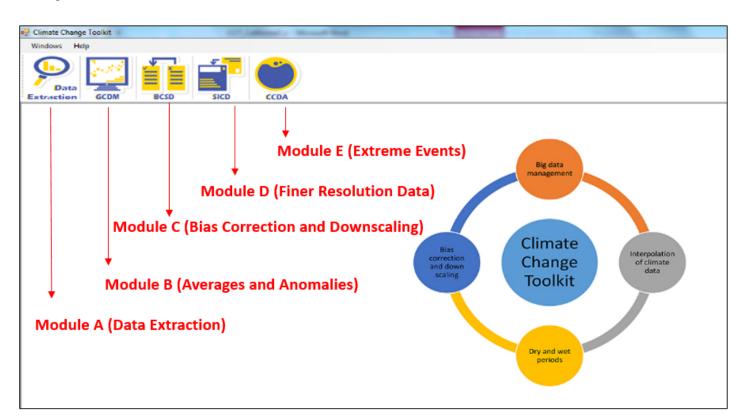
IRAN is located between 25 to 40 north latitude and 44 to 63 east longitude and an area of 1,648,195 km2. The altitude varies from - m to 5670 m.


Select & Download

Global

We have prepared the global soil and landuse data compatible with Soil and Water Assessment Tool (SWAT) format. For further information feel free to contact us.

Select & Download


Climate Change Toolkit (CCT)

UNIVERSITÉ DE GENÈVE

- Collect historic measured data
- Colelct GCM climate change data (find, extract from Netcdf format, reformat for SWAT, etc...)
- Downscale/bias correct climate change data
- Interpolating to finer resolution
- Run hydrologic model with future data

• Analysis of extreme events

Data Archive

- Consists of 5 global GCMs and 4 emission scenarios (CMIP5) from ISI-MIP (1950-2100) at 0.5 degree resolution
- Historic CRU data (1970-2012) at 0.5 degree resolution
- SWAT-formatted precipitation, max and min temperaturec

GCM	Scenarios	Institute
GFDL-ESM2M	RCPs 2.6,4.5,6,8.5	NOAA/Geophysical Fluid Dynamics Laboratory (USA)
HadGEM2-ES	RCPs 2.6,4.5,6,8.5	Met Office Hadley Centre (United Kingdom)
IPSL-CM5A-LR	RCPs 2.6,4.5,6,8.5	Institute Pierre-Simon Laplace (France)
MIROC	RCPs 2.6,4.5,6,8.5	AORI, NIES and JAMSTEC (Japan)
NoerESM1-M	RCPs 2.6,4.5,6,8.5	Norwegian Climate Center (Norway)

Module A: Data Extraction

• Spatial extraction Lat: -89.75 to 89.75 Long: -179.75 to +179.75

Windows Help				
Data Extraction	terpolation CCDAnalizer			
🖳 General Form				_ • •
Climate Data				
Main Database Folder :	c:\myCCTproject\MyDownload		browse	
Historic Climate Data:	I HistoricData Obser	vedData		
Future Climate Models:	GCM1 GCM2	GCM3 GCM4	GCM5 IstoricData	
Carbon Emission Scenarios	Scenario1 Scenario2	Scenario3 Scenario4	Historic II HistoricData	
Cliamate Variables:	✓ Precipitation ✓ Temperature	erature		
Spatial Extent to Extract:	Latitude: From: 25	To: 40		
	longitude: From: 44	То: 63		
				Input
Temporal Extent to Extract:	IntirePeriod	StartDate : Sunday ,	January 01, 2006	Downscalin
	SelectedPeriod	EndDate : Thursday,I	December 31, 2099	Browse Output
User Project Folder:	c:\myCCTproject		browse	Run

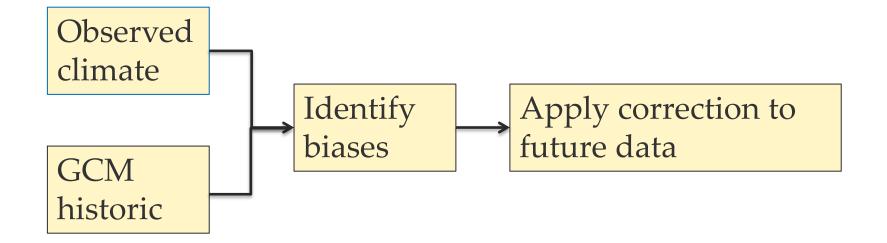
Module B: Global Climate Data Management (Averages and Anomalies)

 Calculate monthly and annually averages and anomalies at each grid point

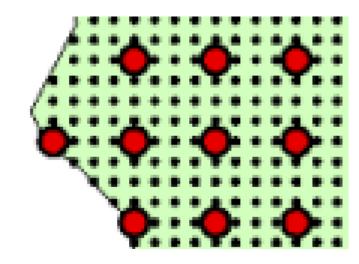
<u>W</u> indows <u>Help</u>		
Data Calculate	Bias Fection Interpolation CCDAnalizer	
🖳 Global Climate Data Manage	ement (GCDM)	
Calculate monthly and	annually averages	
Input Data :	c:\myCCTproject\UserDatabase browse	
Historic Climate Model:	■ HistoricData ObservedData FileStartDate : Thursday , January 01, 1970 ■	
Future Climate Models:	GCM1 GCM2 GCM3 GCM4 GCM5	
Carbon Emission	Scenario1 Scenario2 Scenario3 Scenario4 I Historic	Browse
Climate Variables:	Precipitation Imperature	Output
		Run
Calculate Longterm Av	verages and Anomalies	
Historic Climate Data	(base) : 🗹 HistoricData 🔲 ObservedData	
	tDate : Thursday , January 01, 1970	Browse Output
Future Period: Star	tDate : Sunday , January 01, 2006 ■▼ EndDate : Saturday , December 31, 2050 ■▼	Run

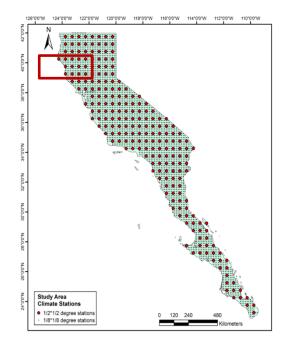
Module C: Bias Correction Statistical Downscaling

- For precipitation: multiplicative correction
- For temperature: additive correction


<u>W</u> indows	Help								
Data Extraction	Calculate Average Anomaly	Bias	Interpolation CCDAnalia	zer					
🚽 Bias Correc	ction Statistical	Downscaling	(BCSD)						
Manual	browsing o	of data							
Input Da	ata :		c:\myCCTproject\Us	serDatabase				browse	
Historic	Climate Dat	ta:	HistoricData	C Observ	edData				
Future	Climate Mo	dels:	GCM1	GCM2	GCM3	GCM4	GCM5		
Carbon	Emission S	cenarios:	Scenario1	Scenario2	Scenario3	Scenario4	Historic		
Climate	Variables:		Precipitation	🔲 Tempe	rature				
GCMs L	GCMs Longterm Statistics: C:\myCCTproject\InputBiasCorrection\GCM_Longterm_GCM1_Historic_pcp_TotalReport.xlsx browse					Browse			
Historic							Output		
Correcti	ion Method	:	Ratio Method	© A	dditive Method			Observed	Run

UNIVERSITE




Module D: Spatial Interpolation of Climate Data

• Inverse Distance Weight Method (IDW)

<u>W</u> indows	Help	_							
Data Extraction	Calculate Average	Bias rection	terpolation						
🖳 Spatial I	Interpolation of Clima	ate Data (S	SICD)						
Man	nual browsing of	data							
Inpu	it Data :		c:\myCCTproject\Us	erDatabase				browse	
Histo	oric Climate Data:	:	HistoricData	Cobserve	edData				
Futu	ire Climate Mode	els:	GCM1	GCM2	GCM3	GCM4	GCM5		
Carb	oon Emission Sco	enarios:	Scenario1	Scenario2	Scenario3	Scenario4	Historic		
Clim	ate Variables:		Precipitation	🔲 Tempei	rature				
ı	Method :		Considering Elev	ation					
0	Current Grid Size	et i	0.5						Browse
	Latitude:	From:	25		To: 40				Output
									Bus
	ongitude:	From:	44		To: 63				Run

Module D: Spatial Interpolation of Climate Data

UNIVERSITÉ DE GENÈVE Module E: Critical Consecutive Days Analyzer

nta Average on Anomaly	rpelation CCDAnalizer						
A (Critical Continues Days Analysis)							
tCCDA InputCCDA from Swa	tcup outputs ccda						
limate Data							
Main Database Folder :	c:\myCCTproject\B	as-Correted				browse	
Historic Climate Data:	HistoricData	C Observ	redData				
Future Climate Models:	GCM1	GCM2	GCM3	GCM4	GCM5		
Carbon Emission Scenarios:	Scenario1	Scenario2	Scenario3	Scenario4	Historic		
Cliamate Variables:	Precipitation	Tempe	rature				
Spatial Extent to extract:	Latitude: From:	25	To:	40			
Spatial Extent to extract.	Laude. FIOII.	2.5	10.	40			
	longitude: From:	44	To:	63			
Temporal Extent to extract:	EntirePeriod		StartDate :	Sunday ,	January 01, 2006		
	SelectedPeriod		EndDate :	Thursday , I	December 31, 2099		Browse Output
						1	Run

Module E: Critical Consecutive Days Analyzer

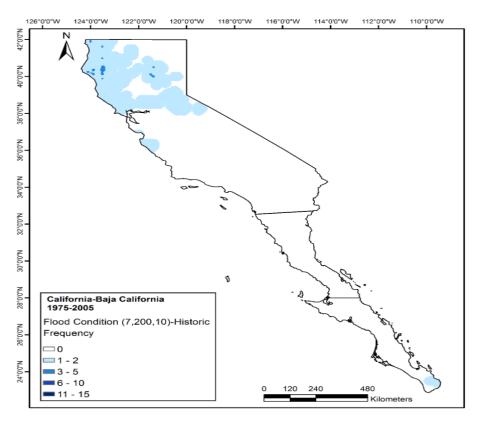
Region		Wet Period	Dry Period	
		What is the frequency of:	What is the frequency of:	
Tropical Regions		Period Length > 2 days precipitation > 50 mm/day	Period Length > 60 days precipitation < 2 mm/day .and. max temperature > 30° C	
		What is the frequency of:	What is the frequency of:	
Semi-Arid Regions		Period Length > 1 day precipitation > 20 mm/day	Period Length > 120 days precipitation < 2 mm/day .and. max temperature > 35° C	

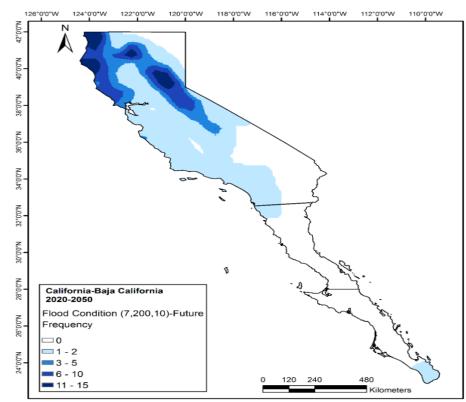
California example: Flood analysis

Table 4

Records of historic flooding conditions in California.

	Region	Year	Precipitation (mm)	Duration (Day)	Return period (years)
	California	1909	1,458	20	12,000
1	North of Los Angeles	1933-1934	300	7	
2	Santa Ana River basin	February (4-7) 1937	200	4	450
3	Los Angeles	1938	254	5	
4	California (Shasta County)	December 1955	390	1	
5	California-Wester Nevada	1986	740	10	
6	California-Calistoga	1986	740	10	1,000
7	California-Sacramento	1986	250	11	
8	Northern California-Sierra Nevada	1996-1997	760	16	

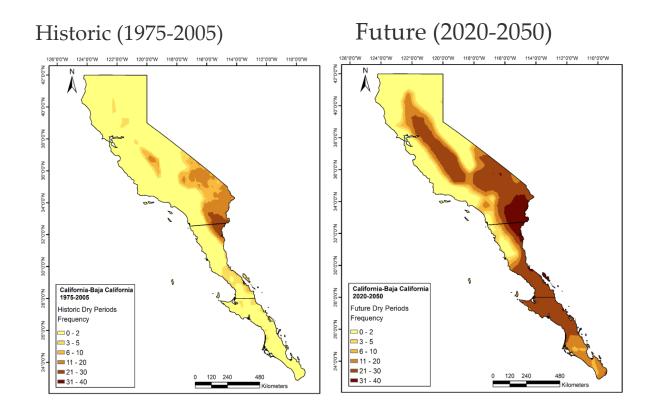



California Results- Flood analysis

Flood condition: 7 days rainfall, more than 200 mm, min 10 mm/d

Historic (1975-2005)

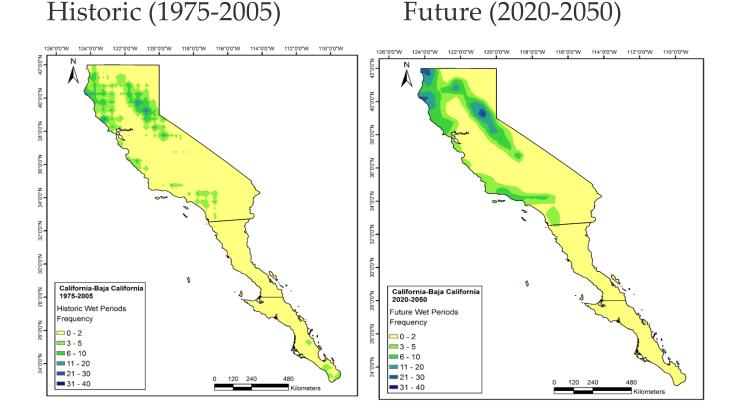
Future (2020-2050)



California Results- Dry periods

Period Length > 60 days precipitation < 2 mm/day .and. max temperature > 30° C

Frequency of dry periods increased from 0-2 to 30–40 times



California Results- Wet periods

Period Length > 2 days, Precipitation > 50 mm day⁻¹

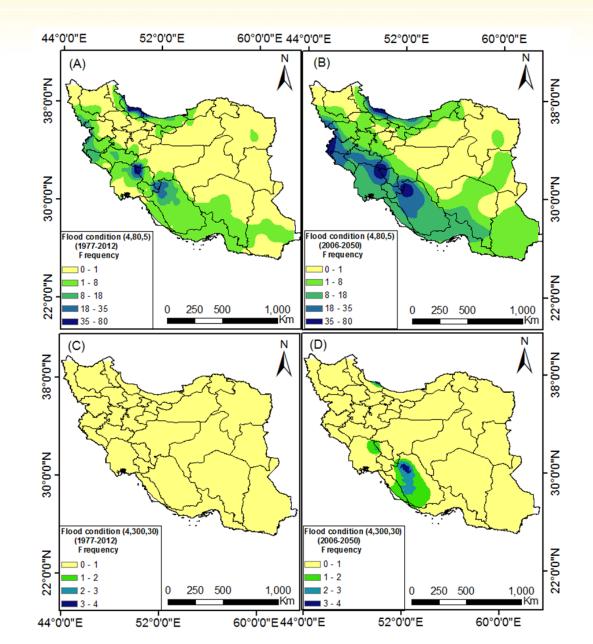
UNIVERSITÉ DE GENÈVE

Frequency of wet periods: 0-2 to 31 - 40 times

Iran Floods

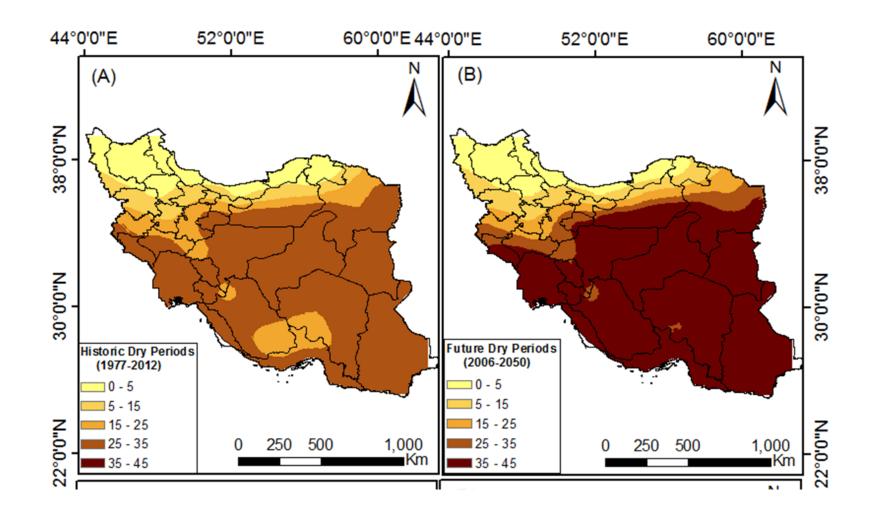
Table 1

Reference criteria to study extreme floods.


*	

province	date	Duration precipitation day	Total precipitin mm	Damage	
				Fatalities	Buildings
Golestan	11 August	2	140		4,000 buildings
East Azerbaijan	April 14 to April 17, 2017	2	55	42 deaths	-
Kurdistan		3	53	5 deaths	
Golestan	September 2, 2016	1	68	4 deaths	900
Ilam	2015, October28	3	325	9	
Lorestan			121	7	-
Tehran	19 July 2015	1	34	30 people injured	-
Mazandaran	19 and 20 July 2015	2	166.1		-
Qazvin	30 March 2015	1	31.1	77 people injured	-
Sistan	30 January 2017	4	118	1 death	-
Fars	13 February 2017	6	360	-	-

Iran Floods



Frequency of 150 consecutive days where rainfall < 2 mm and for the 1977-2012 period and 2006-2050

