International SWAT Conference, 2018

September 19-21, Brussels

Simulating stream flow using an eco-hydrological model calibrated with global land surface evapotranspiration from remote sensing data

Abolanle Elizabeth Odusanya, Christoph Schürz, Karsten Schulz, and Bano Mehdi

University of Natural Resources and Life Sciences, Vienna (BOKU), Austria

Friday 21, September, 2018

Motivation & Project Background

- Ogun river is the main source of public water supply for two states (Lagos & Ogun) in Nigeria
- With the increasing population and their socio-economic activities, the Ogun river is susceptible to point and non-point source pollution (e.g high phosphorus load)

- No reliable hydrological gauging stations
- No standard water quality monitoring stations

Objectives

2

Lack of ground observation to accurately model the watershed is a challenging task

To validate the simulated stream flow using similar neighbouring catchment stream flow

Study Area - Ogun River Basin

lometern

- Ogun River Basin located in tropical rainy climate SW Nigeria (20,292km²)
- Mean annual precipitation is 1224mm
- Mean annual temperature is about 27°C
- Mean annual PET (Hargreaves)= 1720 mm
- Mean annual AET (simulated) = 692 mm

SWAT Model Inputs

3 different PET equations selected & SWAT setup names

■ Hargreaves : $\lambda E_o = 0.0023 \cdot H_0 \cdot (T_{mx} - T_{mn})^{0.5} \cdot (\overline{T}_{av} + 17.8)$

SWAT setup is refers to SWAT-HG

- Priestley-Taylor : $\lambda E_o = \alpha_{pet} \cdot \frac{\Delta}{\Delta + \gamma} \cdot (H_{net} G)$ SWAT setup is refers to **SWAT-PT**
- Penman-Monteith: $\lambda E = \frac{\Delta \cdot (H_{net} G) + \rho_{air} \cdot c_p \cdot [e_z^o e_z]/r_a}{\Delta + \gamma \cdot (1 + r_c/r_a)}$ SWAT setup is refers to SWAT-PM

Global AET Data MODIS

- MOD16 AET
- Spanning 2000-2012 (1km²)
- Based on Penman-Monteith algorithm
 - Input into Eqn. driven by satellite data
 - The AET is derived from PET using multipliers to halt plant transpiration
 & soil evaporation

- GLEAM_v3.0a, AET
- Spanning 1980-2014 (0.25⁰)
- Based on Priestley-Taylor algorithm
 - Input into Eqn. driven by satellite data
 - The AET is derived from PET using a multiplicative stress factor based microwave vegetative optical depth used as a proxy for the vegetative water content & root zone soil moisture simulations

Acronyms	Description
G_AET_HG	SWAT-HG simulated AET calibrated/validated with GLEAM_v3.0a AET
G_AET_PT	SWAT-PT simulated AET calibrated/validated with GLEAM_v3.0a AET
G_AET_PM	SWAT-PM simulated AET calibrated/validated with GLEAM_v3.0a AET
M_AET_HG	SWAT-HG simulated AET calibrated/validated with MOD16 AET
M_AET_PT	SWAT-PT simulated AET calibrated/validated with MOD16 AET
M_AET_PM	SWAT-PM simulated AET calibrated/validated with MOD16 AET

Calibration/Validation Procedure

SWAT Calibration/Validation of AET Results

AUTHOR	BOKU	AUHORIT
--------	------	---------

Model Run	Statistics	Calibration	Validat	ion
G_AET_HG	KGE NSE	0.77 0.61	0.68 0.45	
G_AET_PT	KGE NSE	0.69 0.43	0.64 0.32	
G_AET_PM	KGE NSE	0.65 0.34	0.60 0.20	
M_AET_HG	KGE NSE	0.52 -0.1	0.28 -0.83	For more detailed results:
M_AET_PT	KGE NSE	0.46 -0.20	0.18 -1.08	Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-170 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 23 April 2018 © Author(s) 2018. CC BY 4.0 License.
M_AET_PM	KGE NSE	0.41 -0.37	0.19 -1.25	Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data sparse catchment in southwestern Nigeria
				5 Abolanle E. Odusanya ¹ , Bano Mehdi ^{1, 2} , Christoph Schürz ¹ , Adebayo O. Oke ³ , Olufiropo S. Awokola ⁴ , Julius A. Awomeso ⁵ , Joseph O. Adejuwon ⁵ and Karsten Schulz ¹

Validation

NSE Threshold = 0.59

How valid are the stream flow simulations with AET data?

- The best simulation with NSE as objective function
- 3 neighbouring catchments
- Catchment similarity analysis

Catchment Proximity

Catchment Physiographic Characteristics

Description of variables	Ogun	Queme_Bonou	Queme_Save	Mono
Watershed area (Km ²)	20,292	48,784	23,497	20,289
Elevation (m) min max	23 624	-5 628	95 628	53 887
Geology	Precambrian Basement	Precambrian Basement	Precambrian Basement	Precambrian Basement
Dominant soil type (%)	Ferric Luvisols (86.9)	Ferric Luvisols (69.9)	Ferric Luvisols (81)	Ferric Luvisols (64.7)
Dominant land use (%)	Broadleaved deciduous (33.6)	Broadleaved deciduous (50.2)	Broadleaved deciduous (60.3)	Broadleaved deciduous (40.6)
Slope (degrees) min max	0 66.5	0 67.4	0 66.6	0 61.0

Description of variables	Ogun	Queme_Bonou	Queme_Save	Mono
Mean annual rainfall (mm/yr)	1205	1216	1216	1332
<u>Rainfall Pattern</u> Upstream Downstream	Bi-modal Bi-modal	Uni-modal Bi-modal	Uni-modal Bi-modal	Bi-modal
Koppen climate classification	Tropical savannah (Tropical wet and dry)			
Mean annual Temperature (ºC)	27.1	27.8	27.8	26.6
Drainage Density (km/km²)	8.2	14.3	5.3	8.7

Index	Ogun	Queme_Bonou	Queme_Save	Mono
Mean runoff coefficient	0.13	0.11	0.14	0.15
<u>Annual aridity</u> Upstream Downstream	0.70 0.73 0.37	0.61 0.68 0.28	0.61 0.68 0.41	0.71 0.69 0.56
variation	0.37	0.20	0.41	0.50
High flow segment volume of FDC (ex.p <0.1)	78.2	53.8	137.5	100
low flow segment volume of FDC(ex.p <0.4-1)	11.9	9	11.7	15.9

Plot of Statistical Indices Describing Catchment Behaviour (1)

i. Flow duration curve pattern

ii. Runoff coefficients correlation

iii. Aridity index and stream flow correlation

iv. Streamflow Q-Q plot

Validation of Ogun Simulated Streamflow

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Queme_Bonou

Queme_Save

Mono

0 1 з 5 7

43 45 47 49 51 53 55 57 59 month from January 2002 to December 2010

61

63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

19-21 September, International SWAT Conference 2018 in Brussels, Belgium

39 41

Conclusions

- Our results showed that global AET products can be used for calibrating the SWAT model for ungauged basins.
- Specifically, when the SWAT model was used with the Hargreaves PET equation in simulating AET and was calibrated using the GLEAM_v3.0a AET product the highest model performance was obtained.
- Using neighbouring catchments provided helpful indicators to independently validate the SWAT simulated streamflow.
- We recommend the use of all three available PET equations in SWAT to estimate AET whenever the model calibration is carried out with any satellite based AET products

3 PET equation in SWAT

3 diff PET equations are applied to SWAT

Hargreaves (SWAT-HG):

 $\lambda E_o = 0.0023 \cdot H_0 \cdot (T_{mx} - T_{mn})^{0.5} \cdot (\overline{T}_{av} + 17.8)$

where λ is the latent heat of vaporization (MJ kg⁻¹), E_o is the potential evapotranspiration (mm d⁻¹), H_0 is the extraterrestrial radiation (MJ m⁻² d⁻¹), T_{mx} is the maximum air temperature for a given day (°C), T_{mn} is the minimum air temperature for a given day (°C), and \overline{T}_{av} is the mean air temperature for a given day (°C).

Priestyl-Taylor (SWAT-PT):

$$\lambda E_o = \alpha_{pet} \cdot \frac{\Delta}{\Delta + \gamma} \cdot \left(H_{net} - G\right)$$

where λ is the latent heat of vaporization (MJ kg⁻¹), E_o is the potential evapotranspiration (mm d⁻¹), α_{pet} is a coefficient, Δ is the slope of the saturation vapor pressure-temperature curve, de/dT (kPa °C⁻¹), γ is the psychrometric constant (kPa °C⁻¹), H_{net} is the net radiation (MJ m⁻² d⁻¹), and *G* is the heat flux density to the ground (MJ m⁻² d⁻¹).

Penman-Monteith (SWAT-PM):

$$\lambda E = \frac{\Delta \cdot (H_{net} - G) + \rho_{air} \cdot c_p \cdot [e_z^o - e_z]/r_a}{\Delta + \gamma \cdot (1 + r_c/r_a)}$$

where λE is the latent heat flux density (MJ m⁻² d⁻¹), *E* is the depth rate evaporation (mm d⁻¹), Δ is the slope of the saturation vapor pressure-temperature curve, de/dT (kPa °C⁻¹), H_{net} is the net radiation (MJ m⁻² d⁻¹), *G* is the heat flux density to the ground (MJ m⁻² d⁻¹), ρ_{air} is the air density (kg m⁻³), c_p is the specific heat at constant pressure (MJ kg⁻¹ °C⁻¹), e_z^o is the saturation vapor pressure of air at height *z* (kPa), e_z is the water vapor pressure of air at height *z* (kPa), γ is the psychrometric constant (kPa °C⁻¹), r_c is the plant canopy resistance (s m⁻¹), and r_a is the diffusion resistance of the air layer (aerodynamic resistance) (s m⁻¹).

Uncalibrated SWAT (Default)Results

Model Run	Statistics	Uncalibrated
RG_AET_HG	KGE NSE	0.51 -0.38
RG_AET_PT	KGE NSE	0.55 -0.28
G_AET_PM	KGE NSE	0.46 -0.36
RM_AET_HG	KGE NSE	0.42 -2.8
RM_AET_PT	KGE NSE	0.43 -2.6
RM_AET_PM	KGE NSE	0.35 -2.48

Landuse spatial distribution

Soil spatial distribution

Elevation spatial distribution

Slope spatial distribution

1100000

1050000

0000001

950000

8

Rainfall-Runoff relationship

Aridity index Q-Q plot

Runoff coefficient ECDF

summary statistics of basins runoff coefficient of events

On-going work

• Using GUESS framework for nutrient calibration in the data sparse catchment

Future work

- To quantify the impact of agricultural landuse change on the water quality of Ogun River
- To Assess the impact of climate change on water quality and quantity of the watershed
- To develop best management practices that will be formulated into policy

1

2

Testing the three available PET equations in SWAT to estimate AET whenever the model calibration is carried out with any satellite based AET products

Independent validation of hydrological model with a ground truth observation data whenever models are calibrated with solely satellite based AET