SWAT vs. SWAT-MODFLOW in lowland catchments: Comparison of performance and simulation of groundwater abstraction scenarios

Eugenio Molina-Navarro, Hans E. Andersen, Hans Thodsen, Anders Nielsen, Dennis Trolle Department of Bioscience, Aarhus University.

Ryan T. Bailey, Seonggyu Park Department of Civil and Environmental Engineering, Colorado State University.

> Jacob S. Jensen NIRAS

Jacob B. Jensen WATSONC and Department of Civil Engineering, Aarhus University

INTRODUCTION

GEUS (2008)

SWAT INTERNATIONAL CONFERENCE EUGENIO MOLINA NAVARRO ET AL. SEPTEMBER 2018

Average GW contribution to streamflow: - 76% continent

59% islands

Vital importance of good understanding of GW processes and the GW-SW interactions

Danish drinking water supply: based entirely on groundwater

Additional abstraction for agricultural and industrial purposes

Some areas: groundwater exploitation above sustainable yield

INTRODUCTION

Soil & Water Assessment Tool

Walker & Mallants (2014)

Accurate representation of GW processes is desirable.

- To know well how is the interaction with surface water
- To assess the impacts of groundwater abstraction

How to achieve it: Coupling SWAT with a more detailed groundwater model

INTRODUCTION: SWAT-MODFLOW

Modified from Bailey et al (2017)

STUDY AREA: ODDERBÆK CATCHMENT

DEM (m

18 36

54 70

MAIN CHARACTERISTICS:

- Area: 1142 ha
- Elevation range: 11 m 58 m
- Main land use: Agriculture (85%)
- Climate: Oceanic (warm temperate, fully humid)
 - Average P (2000-2015): 871 mm.
 - Average T (2000-2015): 12.3 °C max, 5.4 °C min

Gislum church

ARHUS

Calibrate both models (SWAT and SWAT-MODFLOW) using SWAT-CUP

CUP

Compare their performances

Evaluate models when simulating abstraction scenarios

MODFLOW model provided by NIRAS

(SWAT-MODFLOW)

SWAT INTERNATIONAL CONFERENCE EUGENIO MOLINA NAVARRO ET AL. SEPTEMBER 2018

MODELS SET-UP: Q-SWAT

Pasture (0.68%) → Agriculture Water (0.14%) → Wetlands Roads = Residential DK4037 (0.54%) → DK4027 DK4047 (0.54%) → DK4027

MODELS SET-UP: SWAT-MODFLOW COUPLING

MODFLOW MODEL (NIRAS)

- 100 m discretization
- Two aquifers with a clay layer in-between
- Pre-calibrated (Sørensen and Jensen, 2009)

COUPLING PROCEDURE:

FIRST: Disaggregate HRUs into DHRUs (individual polygons)

SECOND: LINKAGES

- SWAT DHRUs \leftrightarrow MODFLOW grid cells
- SWAT SUBBASINS \leftrightarrow MODFLOW river cells
- Done through GIS routines (Bailey et al., 2016, 2017)

CALIBRATION AND VALIDATION

Molina-Navarro *et al.* (2017) Environmental Modelling & Software

SCENARIOS SIMULATION

- ✤ 3 abstraction wells, one each in subbasins 12, 14 and 15
 - 3 abstraction wells, all in subbasin 15
 - High abstraction rate (water supply, deep)
 - Low abstraction rate (irrigation, shallow)

3 SCENARIOS → Impacts on streamflow

RESULTS: CALIBRATION

SWAT:

R²=0.69 NSE=0.64 PBIAS=-4.4

P (mm)	875
SUR Q (mm)	8
LAT Q (mm)	8
TILE Q (mm)	37
GW Q (mm)	200
ET (mm)	574
PET (mm)	669

P (mm)	875
SUR Q (mm)	12
LAT Q (mm)	1
TILE Q (mm)	38
GW Q (mm)	174
ET (mm)	570
PET (mm)	669

RESULTS: VALIDATION

SWAT:

P (mm)	889
SUR Q (mm)	8
LAT Q (mm)	8
TILE Q (mm)	39
GW Q (mm)	185
ET (mm)	565
PET (mm)	690

P (mm) FLOW: SUR Q (mm) LAT Q (mm) TILE Q (mm) GW Q (mm) ET (mm) PET (mm)

889

13

1

40

162

562

691

RESULTS: ABSTRACTION SCENARIOS

SWAT

SWAT-MODFLOW

ADDITIONAL SWAT-MODFLOW OUTPUTS

Difference in average stream-aquifer water exchange vs. control

SWAT-MODFLOW allows to explore the **spatial variability** of groundwater discharge at a cell level, evaluating the impacts of the scenarios

ADDITIONAL SWAT-MODFLOW OUTPUTS

THREE WELLS IN SUB-BASIN 15

ONE WELL IN SUB-BASINS 12, 14 and 15

END (31/12/2010)

SWAT-MODFLOW allows to explore the impacts of the scenarios in the water table elevation

EUGENIO MOLINA NAVARRO ET AL.

CONCLUSIONS

MODEL PERFORMANCE

- Both models showed a good statistical performance (first time this version of SWAT-MODFLOW is successfully applied in a catchment of this characteristics).
- ✓ **SWAT-MODFLOW** performs better during periods of **hydrograph recession**.

ABSTRACTION SCENARIOS SIMULATION

- SWAT-MODFLOW yielded more realistic results than SWAT, simulating a decrease in streamflow close to the abstracted water volume.
- ✓ In SWAT, groundwater in the "deep aquifer" was not affected, besides being numerical input limitations.
- SWAT-MODFLOW allows wider possibilities for groundwater analysis, e.g. spatial distribution of streamaquifer exchange or water table elevations.

RESULTS SUPPORT THE USE OF SWAT-MODFLOW INSTEAD OF SWAT IN CATCHMENTS WHEREIN GROUNDWATER IS A DOMINANT COMPONENT OF STREAM FLOW

THANKS FOR YOUR ATTENTION Questions?

