SWAT vs. SWAT-MODFLOW in lowland catchments: Comparison of performance and simulation of groundwater abstraction scenarios

Eugenio Molina-Navarro, Hans E. Andersen, Hans Thodsen, Anders Nielsen, Dennis Trolle
Department of Bioscience, Aarhus University.

Ryan T. Bailey, Seonggyu Park
Department of Civil and Environmental Engineering, Colorado State University.

Jacob S. Jensen
NIRAS

Jacob B. Jensen
WATSONC and Department of Civil Engineering, Aarhus University
INTRODUCTION

Danish drinking water supply: based entirely on groundwater

Additional abstraction for agricultural and industrial purposes

Some areas: groundwater exploitation above sustainable yield

Average GW contribution to streamflow:
- 76% continent
- 59% islands

Vital importance of good understanding of GW processes and the GW-SW interactions

GEUS (2008)
INTRODUCTION

Simple approach to represent groundwater processes

Accurate representation of GW processes is desirable.
- To know well how is the interaction with surface water
- To assess the impacts of groundwater abstraction

How to achieve it:
Coupling SWAT with a more detailed groundwater model

Walker & Mallants (2014)
INTRODUCTION: SWAT-MODFLOW

Modified from Bailey et al (2017)
STUDY AREA: ODDERBÆK CATCHMENT

MAIN CHARACTERISTICS:
- **Area**: 1142 ha
- **Elevation range**: 11 m – 58 m
- **Main land use**: Agriculture (85%)
- **Climate**: Oceanic (warm temperate, fully humid)
 - Average T (2000-2015): 12.3 °C max, 5.4 °C min

Gislum church
GOALS

Set-up a new SWAT model with the latest version of Q-SWAT

Couple the SWAT model with a MODFLOW model provided by NIRAS (SWAT-MODFLOW)

Calibrate both models (SWAT and SWAT-MODFLOW) using SWAT-CUP

Compare their performances

Evaluate models when simulating abstraction scenarios
MODELS SET-UP: Q-SWAT

A) Pasture (0.68%) → Agriculture
Water (0.14%) → Wetlands
Roads = Residential

B) Land Use
- Residential
- Agriculture 1
- Agriculture 2
- Agriculture 3
- Agriculture 4
- Evergreen forest
- Wetland

C) Soil types
- DK998
- DK999
- DK4016
- DK4018
- DK4027
- DK4048

DK4037 (0.54%) → DK4027
DK4047 (0.54%) → DK4027
MODELS SET-UP: SWAT-MODFLOW COUPLING

MODFLOW MODEL (NIRAS)
- 100 m discretization
- Two aquifers with a clay layer in-between
- Pre-calibrated (Sørensen and Jensen, 2009)

COUPLING PROCEDURE:
FIRST: Disaggregate HRUs into DHRUs (individual polygons)
SECOND: LINKAGES
- SWAT DHRUs ↔ MODFLOW grid cells
- SWAT SUBBASINS ↔ MODFLOW river cells
- Done through GIS routines (Bailey et al., 2016, 2017)
CALIBRATION AND VALIDATION

Flow data

SWAT: 24 parameters
S-M: 17 parameters

Expert knowledge

WARM-UP CALIBRATION VALIDATION

ADDITIONALLY IN SWAT-MODFLOW

BEFORE SWAT-CUP:
- Preliminary iteration of 300 simulations
- OAT manual sensitivity analysis of MODFLOW’s River Package parameters
- Manual calibration of River Package parameters.
- SWAT parameters calibration

AFTER SWAT-CUP:
- Fine-tuning of sensitive parameters in the River Package

Molina-Navarro et al. (2017)
Environmental Modelling & Software
SCENARIOS SIMULATION

3 abstraction wells, one each in subbasins 12, 14 and 15
3 abstraction wells, all in subbasin 15
- High abstraction rate (water supply, deep)
- Low abstraction rate (irrigation, shallow)

3 SCENARIOS ➔ Impacts on streamflow
RESULTS: CALIBRATION

SWAT:
- $R^2 = 0.69$
- $NSE = 0.64$
- $PBIAS = -4.4$

SWAT-MODFLOW:
- $R^2 = 0.71$
- $NSE = 0.69$
- $PBIAS = 7.0$

<table>
<thead>
<tr>
<th>Component</th>
<th>Value (mm)</th>
<th>Value (mm)</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>875</td>
<td>875</td>
<td>875</td>
</tr>
<tr>
<td>SUR Q</td>
<td>8</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>LAT Q</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TILE Q</td>
<td>37</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>GW Q</td>
<td>200</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>ET</td>
<td>574</td>
<td>570</td>
<td>570</td>
</tr>
<tr>
<td>PET</td>
<td>669</td>
<td>669</td>
<td>669</td>
</tr>
</tbody>
</table>
RESULTS: VALIDATION

SWAT:
- $R^2 = 0.64$
- $NSE = 0.59$
- $PBIAS = -2.6$

SWAT-MODFLOW:
- $R^2 = 0.68$
- $NSE = 0.65$
- $PBIAS = 7.6$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SWAT</th>
<th>SWAT-MODFLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (mm)</td>
<td>889</td>
<td>889</td>
</tr>
<tr>
<td>SUR Q (mm)</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>LAT Q (mm)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>TILE Q (mm)</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>GW Q (mm)</td>
<td>185</td>
<td>162</td>
</tr>
<tr>
<td>ET (mm)</td>
<td>565</td>
<td>562</td>
</tr>
<tr>
<td>PET (mm)</td>
<td>690</td>
<td>691</td>
</tr>
</tbody>
</table>
RESULTS: ABSTRACTION SCENARIOS

SWAT

A)

SWAT-MODFLOW

B)
ADDITIONAL SWAT-MODFLOW OUTPUTS

Average daily rate of stream-aquifer water exchange (control)

Difference in average stream-aquifer water exchange vs. control

SWAT-MODFLOW allows to explore the **spatial variability** of groundwater discharge at a cell level, evaluating the impacts of the scenarios.
ADDITIONAL SWAT-MODFLOW OUTPUTS

CONTROL SCENARIO

START (01/01/2000) MID (31/12/2005) END (31/12/2010)

THREE WELLS IN SUB-BASIN 15

START (01/01/2000) MID (31/12/2005) END (31/12/2010)

ONE WELL IN SUB-BASINS 12, 14 and 15

START (01/01/2000) MID (31/12/2005) END (31/12/2010)

SWAT-MODFLOW allows to explore the impacts of the scenarios in the water table elevation.
CONCLUSIONS

MODEL PERFORMANCE

✓ Both models showed a good statistical performance (first time this version of SWAT-MODFLOW is successfully applied in a catchment of this characteristics).
✓ SWAT-MODFLOW performs better during periods of hydrograph recession.

ABSTRACTION SCENARIOS SIMULATION

✓ SWAT-MODFLOW yielded more realistic results than SWAT, simulating a decrease in streamflow close to the abstracted water volume.
✓ In SWAT, groundwater in the “deep aquifer” was not affected, besides being numerical input limitations.
✓ SWAT-MODFLOW allows wider possibilities for groundwater analysis, e.g. spatial distribution of stream-aquifer exchange or water table elevations.

RESULTS SUPPORT THE USE OF SWAT-MODFLOW INSTEAD OF SWAT IN CATCHMENTS WHEREIN GROUNDWATER IS A DOMINANT COMPONENT OF STREAM FLOW
THANKS FOR YOUR ATTENTION

Questions?