

Evaluation of the precipitation time-step influence in streamflow and suspended sediment yield using SWAT in a small forested headwater catchment

Maite Meaurio, Juan Luis Lechuga, Ane Zabaleta, Raghavan Srinivasan, Sabine Sauvage,

José-Miguel Sánchez-Pérez, Iñaki Antiguedad

SWAT 2018 International Conference - September 2018

INDEX

- 1. Introduction
- 2. Objectives
- 3. Methodology
 - Study area
 - SWAT model
- 4. Results
 - Hourly long-term simulation
 - Storm-events performance
 - Influence of the precipitation time-step
- 5. Conclusions

1. INTRODUCTION	2. OBJECTIVES	3. METHOD	OLOGY	4. RE	SULTS	5. CONCLUSIONS
	Head	water ca	tchme	nts		
 Provide a sign streamflow 	nificant proportion of the many fluvial syst	of ems		Мс	odelling	
• Contribute i to the globa	n an important amo <mark>l sediment dischar</mark> §	unt ge	Montł	nly or dail cat	y modelin tchments?	g in headwater ??
• Influence in quantity tha	the water quality and the water quality and the second structure of the second	ind			_	
 downstream The research 	of the hydrologica		Even	it-scale		Long-term
catchment r	nanagement pract	ices	SWA	Few mo T (Soil and	dels can d I Water Asse	o both: essment Tool)

HYPOTHESIS

- As much as lower time-step (precipitation):
 - Better streamflow and sediment yield results

OBJECTIVES

- Evaluate the strengths and weaknesses of SWAT model for streamflow and suspended sediment simulation:
 - Calibrate and validate the streamflow and sediment simulation at hourly time-step (long-term)
 - 2) Evaluate the hourly simulation results at daily time-step (long-term)
 - 3) Evaluate the hourly simulation performance in different storm event (event-scale)
 - 4) Measure the **influence of the precipitation time-step** in the results (long-term)
 - SWAT was used at daily time step in the study catchment^{1,2}

in the Basque Country, northern Spain. J. Environ. Qual. 43, 235–245.

2Meaurio, M., Zabaleta, A., Uriarte, J.A., Srinivasan, R. and Antigüedad, I., 2015. Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. J. Hydrol. 525, 326-334.

¹Zabaleta, A., Meaurio, M., Ruiz, E. and Antigüedad, I., 2014. Simulation climate change impact on runoff and sediment yield in a small watershed

STUDY AREA

SWAT MODEL

SWAT MODEL

2. OBJECTIVES

HOURLY LONG-TERM SIMULATION

STORM-EVENTS PERFORMANCE (EVENT-SCALE)

			OBS			OBS	SIM					OBS	SIM	OBS	SIM		
		bP7d	bQ1d	IP	Pmax	Qmean	Qmean	OBS	SIM	FLOW		CSSmean	CSSmean	SST	SST		
Event	Date	(mm)	(L s ⁻¹)	(mm h ⁻¹)	(mm h ⁻¹)	(L s ⁻¹)	(L s ⁻¹)	BF/SR	BF/SR	RSR	FLOW R ²	(mg L ⁻¹)	(mg L ⁻¹)	(kg)	(kg)	SEDI RSR	SEDI R ²
1	11/4/2011 - 11/8/2011	19.8	20.46	3.7	11.9	649.91	834.12	0.41	0.64	0.77	0.43	105.68	31.85	8430	10940	1.02	0.06
2	1/28/2012 - 1/30/2012	32	90.02	1.0	3.8	223.29	246.14	4.40	3.01	0.59	0.75	49.67	63.66	1748	2509	0.61	0.75
3	2/4/2013 - 2/23/2013	47.2	302.1	1.0	10.7	586.85	558.16	1.12	2.23	0.48	0.77	20.63	52.53	39510	74089	0.75	0.46
4	4/29/2013 - 5/4/2013	16.4	91.8	0.6	7.6	214.16	242.60	2.28	3.58	0.74	0.67	34.81	35.15	5553	5998	0.39	0.85

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

9

INFLUENCE OF THE PRECIPITATION TIME-STEP

FLOW	2005-2014								
	1H	2H	3H	4H					
NSE	0.71	0.64	0.64	0.64					
R ²	0.89	0.86	0.85	0.82					
PBIAS	-2.29	-14	-12	-14					
RSR	0.54	0.6	0.71	0.68					

Streamflow is almost no affected by precipitation time-step

	SED	2005-2014								
	OLD.	1H	2H	3H	4H					
	NSE	0.48	0.43	0.43	0.41					
	R^2	0.63	0.68	0.7	0.64					
<	PBIAS	6	17	44	49					
	RSR	0.76	0.75	0.71	0.71					

Sediment load is overestimated as the time step increases

1. INTRODUCTION	2. OBJECTIVES	3. METHODOLOGY	4. RESULTS	5. CONCLUSIONS						
CONCLUSIONS										
• The hourly calibration (2010-2014) and validation (2005-2009) show (long-term):										
• The hou	rly streamflow is simula	ted correctly and when t	these data are gather to c	daily time-step the						
results are <i>very good</i> .										
• The observed and simulated hourly sediment load peaks do not fit well, nevertheless the amount of										
sediment is simulated well -> daily the performance is <i>very good</i> .										

Performance of the timing of sediment transportation should be improved

• As much as higher precipitation time-step the results are worse specially for sediments.

• In the hourly simulation of discharge and sediments seems that the antecedent saturation of the catchment plays an important role; when the saturation is high the discharge simulation performance is better.

Thank you!

juanluis.lechuga@ehu.eus maite.meaurio@ehu.eus