SWAT sediment & nutrient calibration and validation with a 6-year dataset of continuous data in a Finnish catchment

Jari Koskiaho¹, Mikołaj Piniewski², Paweł Marcinkowski² & Sirkka Tattari¹

1. Finnish Environment Institute (email: jari.koskiaho@ymparisto.fi)

2. Warsaw University of Life Sciences

SWAT setup – case Vantaanjoki, Finland

<u>Vantaanjoki catchment</u>

- One of the case study catchments of the Bonus RETURN project (www.bonusreturn.com)
- The river flows through Helsinki metropolitan area of over 1 million people → huge recreational value
- River was until 1970s heavily loaded and in poor state
- WWTPs improved the situation and now the river's ecological status is satisfactory
- A significant source of loading into the Gulf of Finland (on av. 60 tons
 S Y K E P and 1000 tons N per year)

1. HRU definition

- MULTIPLE HRUs LandUse/Soil/Slope OPTION
- THRESHOLDS : 4 / 4 / 4 [%]
- Number of HRUs: 1760
- Number of Subbasins: 51

Land use type	ha	% of watershed	SWAT name
Autumn crops	2 078	1,2 %	AGRR
Spring crops	23 861	14,2 %	
Beets	68	0,04 %	
Gardens	239	0,1 %	
Other agricultural areas	2 908	1,7 %	
Grass	10 961	6,5 %	HAY
Pasture	8	0,0 %	
Residential areas	13 948	8,3 %	URBN
Recreational areas	1 768	1,0 %	
Industry & traffic areas	11 195	6,6 %	UIDU
Mines, landfills & construction sites	1 842	1,1 %	
Dense forest	78 445	46,6 %	FRST
Sparse forests, shrubs	16 497	9,8 %	
Rock outcrop	73	0,0 %	
Inland wetlands	878	0,5 %	WETL
Inland waters	3 684	2,2 %	WATR
Total	168 454	100 %	

2. DEM & weather inputs

- DEM 10x10m resolution
- 3 weather stations: one in south and two in northern part of the watershed

3. Land use & soil maps

4. Major point sources, tributaries & lakes

SYKE

Point source (WWTP)

Loading of nutrients and organic matter from WWTPs were obtained from their environmental permits

Pitkäkoski automatic monitoring station

SYKE

- S::can nitro-lyser sensor (<u>www.s-</u> can.at/products/spectrometer-probes#)
- Hourly data from years 2011– 2016, virtually without breaks
- Turbidity (FNU)
- NO₃-N (mg/l)
- TOC & DOC (mg/l)
- High correlation between turbidity and water-sampled total P (and sediment) →
 conversions with linear relationships
- The area upstream the station covers 76% of the Vantaanjoki catchment (only the eastern river Keravanjoki is outside)

Example raw data of 2016 from the Pitkäkoski station

Raw sensor data vs. water samples conversions to TSS, **Ptot and Ntot** concentrations by linear regression equations

Flow calibration against daily gauged flow records (2011-2016)

TSS calibration against sensorbased, highfrequency data (2011-2013)

S Y K E

NO₃ / TN calibration against sensorbased, highfrequency data (2011 - 2013)

A 95PPU

Sub-sampling scenarios: does sampling frequency and strategy matter for SWAT calibration?

- The model calibrated against high-frequency data => 'reference'
- Sub-sampling of HF data to mimic real-world grab sampling frequencies and strategies commonly used by WQ monitoring agencies
- Frequency: monthly (the most common by monitoring agencies) or weekly
- Strategy: regular (easy to implement) vs. random (with some constraints; the most common) vs. flow-proportional sampling
- Only regular monthly sampling scenarios completed so far, for TSS and TN/NO3

Frequency / Strategy	Regular	Random	Flow-proportional
Monthly	Х		
Weekly			
			~~~~



## Riverine monitoring in Baltic Sea Region (BSR) countries as reported in HELCOM Pollution Load Compilation





#### **Examples of sampling strategies**



SYKE

## Comparison of KGE between the models calibrated against high-frequency data and monthly sub-sampled data

- So far six realizations of 'regular monthly' scenario (measurements on the 5th, 10th, 15th, 20th, 25th and 30th of each month => box plots)
- In sub-sampling scenarios, the models were first calibrated against monthly sub-sampled data and then evaluated against highfrequency data (reference)
- Comparisons are based on the 'best' parameter sets obtained using SUFI2



Mean reduction in KGE: 0.21 for TSS and 0.09 for TN/NO $_3$ 



#### Discussion

- Our results are so far preliminary
- As compared with traditional water sampling data, high-frequency data do not only increase the reliability of load estimates, but also reveal differences between traditional sampling strategies and improve model calibration (goodness-of-fit)
- Crockford et al. (2017)*: "One of the benefits of using higher-resolution environmental data is the ability to assess the limitations of existing empirical models that are often employed for river catchment management"
- Perhaps there are possibilities to extend this approach to process-based modeling as well?



*Crockford, L., O'Riordain, S., Taylor, D., Melland, A.R., Shortle, G. & Jordan, P. 2017. The application of high temporal resolution data in river catchment modelling and management strategies. *Environ. Monit. Assess.* 189: 461



