Assessment of Anti-Drought Capacity by Future Dry Climate for Boryeong Dam using SWAT

Won Jin Kim / Chung Gil Jung / Jin Uk Kim / Seong Joon Kim 2018. 09. 20 SWAT Conference

Department of Civil, Environmental and Plant Engineering Konkuk University

Introduction

- Climate change is one of the major challenges of our time and adds considerable stress to our societies and also to the environment.
- Without drastic action today, adapting to climate change impacts in the future will be more difficult and will need more cost.
- Drought in South Korea became a frequent phenomenon since 2000 and recently we suffered extreme droughts for three continuous years (2014, 2015, 2016).
- In particular, Boryeong Dam water storage dropped to below 30% and the residents had suffered restricted water uses.
- It is helpful to evaluate the risk of extreme drought like 2014~2016 in advance through long-term prediction by using available climate change scenarios for a target dam watershed.

Flowchart

SWAT Modeli	Ing	GCM Climate Change Scenario		
Observed Data	GIS Data	■ <i>RCP 4.5</i>		
 Weather data (1980-2017) (Precipitation, Solar Radiation, 		 RCP 8.5 Precipitation, Temperature 		
Temperature, Wind Speed, Radiation Hour)	■DEM ■Land Use	SPI Index		
 Multipurpose water supply dam (1980-2017) Dam sources 	•Soil	 Precipitation(2000-2099) Extreme drought scenario determination 		
Verification	Future dam release	Extreme Drought Scenario		
 Calibration and validation Dam inflow (2007-2016) Dam storage Dam operation (2007-2016) 	 Multiple Linear Regression Analysis Based on observed data 	 Magnitude Duration Longest dry period Driest Scenario among RCP 4.5 and RCP 8.5 		
		Anti-drought Capacity		
SWAT Model Gen	eration	Assessment		
 Model run (2007-2046) Calibrated and Validated Parameters Future Dam Release Extreme Drought Scenario 		 Runs Theory Frequency Analysis Hydrology evaluation 		

Study area

GIS Data

Observed Data

Dam inflow data (2007-2016)

www.wamis.go.kr Water Management Information System

Dam storage data (2007-2016)

Year

Calibration and Validation

Parameters	Definition	Range	Adjusted value
<u>Surface runoff</u>			
CN2	SCS curve number for moisture condition	35 to 98	+10
Evapotranspiratio	<u>n</u>		
ESCO	Soil evaporation compensation coefficient	0 to 1	0.4
CANMX	Maximum canopy storage	0 to 100	11
<u>Lateral flow</u>			
SLOIL	Slope length of lateral subsurface flow (m)	0 to 150	0
LAT_TIME	Lateral flow travel time (days)	0 to 180	7
<u>Groundwater</u>			
GW_DELAY	Delay time for aquifer recharge (days)	0 to 500	100
ALPHA_BF	Base flow recession constant	0 to 1	0.6
<u>Reservoir</u>			
RES_ESA	Reservoir surface area when the reservoir is filled to the emergency spillway (ha)	-	690
RES_EVOL	Volume of water needed to fill the reservoir to the emergency spillway (104 m3)	-	11335.5
RES_PSA	Reservoir surface area when the reservoir is filled to the principal spillway (ha)	-	672
RES_PVOL	Volume of water needed to fill the reservoir to the principal spillway (104 m3)	-	10693.3
RES_VOL	Initial reservoir volume(104 m3)	-	8997.8
RES_K	Hydraulic conductivity of the reservoir bottom (mm/hr)	0 to 1	0.7
EVRSV	Lake evaporation coefficient	0 to 1	0.7

Calibration and Validation

Dam inflow data (2007-2016)

 $R^2 = 0.82, NSE = 0.59$

Dam storage data (2007-2016)

Extreme drought scenario

Select among Climate Change Scenarios

- APCC CMIP5 GCM(General Circulation Model)
- 27 RCP(Representative Concentration Pathway) 4.5 Scenarios and 26 RCP 8.5 Scenarios
- Precipitation, Maximum & Minimum Temperature
- Study Period Classification

S0: 2007-2016, **S1**: 2017-2026, **S2**: 2027-2036, **S3**: 2037-2046

	Priority	2020s	2050s	2080s		Priority	2020s	2050s	2080s
	1	HadGEM2-AO	FGOALS-s2	CanESM2		1	CESM1-BGC	NorESM1-M	MIROC5
	2	CMCC-CMS	CMCC-CMS	CMCC-CMS		2	MRI-CGCM3	INM-CM4	INM-CM4
	3	HadGEM2-ES	HadGEM2-ES	INM-CM4		3	HadGEM2-AO	GFDL-ESM2G	CanESM2
	4	IPSL-CM5A-LR	INM-CM4	HadGEM2-ES		4	GFDL-ESM2G	HadGEM2-ES	CNRM-CM5
	5	GFDL-ESM2G	CNRM-CM5	CCSM4		5	IPSL-CM5A-MR	IPSL-CM5A-MR	IPSL-CM5A-MR
RCP	6	FGOALS-s2	CESM1-BGC	MRI-CGCM3	RCP	6	INM-CM4	CMCC-CM	HadGEM2-ES
4.5	7	INM-CM4	GFDL- ESM2M	FGOALS-s2	8.5	7	HadGEM2-ES	CNRM-CM5	CMCC-CM
	8	CESM1-CAM5	CMCC-CM	IPSL-CM5A-LR		8	MPI-ESM-LR	CCSM4	FGOALS-s2
	9	CanESM2	CanESM2	MPI-ESM-MR		9	FGOALS-s2	FGOALS-s2	CESM1-BGC
	10		GFDL-ESM2G			10	MPI-ESM-MR		MPI-ESM-MR
	11		MRI-CGCM3			11			MRI-CGCM3

Extreme drought scenario

SPI(Standardized Precipitation Index)

- SPI enables rainfall conditions to be quantified over different time scales
- SPI-1 expressed short-term drought
- SPI-12 expressed long-term drought
- The most appropriate SPI expressing both short-term and long-term drought is SPI-6

Extreme drought scenario

Extreme drought index

- Three drought indices; Magnitude, Duration, Longest Dry Period
- McKee et al (1993) classified Dry/Wet Condition by SPI Range
- Determined the Standard of Severe drought under -1.5
- Assume three indices have same weight for the dryness
- RCP 8.5 BCC-CSM1-1-M is selected for the extreme drought scenario

SPI	2.0	1.5	1.0	0.0	-1.0	-1.5	-2.0
Condition	Extremely Wet	Severely Wet	Moderately Wet	Normal	Moderately Dry	Severely Dry	Extremely Dry

Future Dam Release

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis								
$Y = B_1 x_1 + B_2 x_2 + B_3 x_3 + B_4 x_4 + B_5 x_5$								
Y	Dam release	<i>x</i> ₂	Precipitation weight term					
β _n	Increment coefficient of Y for increment of x_n	<i>x</i> ₃	Average Storage					
<i>x</i> ₁	Precipitation	<i>x</i> ₄	Inflow					
x ₅	Inflow weight term							

- Multiple Linear Regression Analysis on the hydrological variables influencing dam release
- Monthly equations for dam release estimation
- Five variables were used

Precipitation, Average storage, Inflow, and Weight terms for precipitation and inflow

- Precipitation, Average storage and Inflow were used in the first place, but showed bad result
- Weight term for factors having large deviation as a resolution

Future Dam Release

Results

r	nonth	1	2	3	4	4 5	
	x ₁ =pcp	8.67E-05	0.003786	0.006962	0.000882	0.000509	0.000229
	$x_2 = p_bin$	0.143248	0.034508	-0.2027	0.041779	-0.18782	-0.22642
Coefficient	x_3 =storage	0.051108	0.05687	0.05793	0.064774	0.074406	0.083391
	x_4 =inflow	0.071528	0.001969	0.011472	-0.01756	0.046154	0.004878
	x ₅ =i_bin	-0.41955	-0.43429	-0.28378	-0.18422	0.166	0.039211
R ²		0.98	0.98	0.97	0.97	0.84	0.92
month		7	8	9	10	11	12
	x ₁ =pcp	0.024391	-0.16451	0.072566	-0.03573	-0.00068	-0.00506
	$x_2 = p_bin$	-3.36807	0.091712	0.668881	0.187445	0.007683	0.064485
Coefficient	x_3 =storage	0.080352	0.054399	0.03971	0.038432	0.042312	0.047005
	x_4 =inflow	0.506205	0.616625	0.208253	0.466362	-0.08956	-0.06811
	$x_5 = i_bin$	-2.69637	-1.68663	0.156315	-0.64031	-0.00294	-0.18038
	R ²	0.57	0.57	0.54	0.70	0.98	0.98

- Average R^2 is 0.83
- Showed lower R² during rainy season

SWAT Model Generation

Hydrology Evaluation

Seasons	Precipitation (mm)				Storage (10 ⁶ m ³)			
	2007-2016	2017 - 2026	2027 - 2036	2037 - 2046	2007-2016	2017 - 2026	2027 - 2036	2037 - 2046
Total	1,324.8	1,149.7 (-13.2 %)	1,338.7 (+ 1.0%)	1,176.7 (-11.2 %)	63.9	56.4 (-11.6 %)	52.3 (-18.1 %)	48.8 (-23.6 %)
Spring (3-5)	251.9	192.8 (-23.5 %)	205.7 (-18.3 %)	175.1 (-30.5 %)	51.9	49.3 (-5.0 %)	42.9 (-17.3 %)	34.2 (-34.0 %)
Summer (6-8)	697.6	573.7 (-17.8 %)	700.6 (+0.4 %)	658.6 (-5.6 %)	60.3	48.0 (-20.4 %)	50.3 (-16.5 %)	44.7 (-25.9 %)
Autumn (9-11)	275.6	306.1 (+11.0 %)	337.7 (+22.5 %)	255.2 (-7.4 %)	77.9	67.1 (-13.9 %)	63.1 (-19.0 %)	66.7 (-14.5 %)
Winter (12-2)	99.7	77.2 (-22.5 %)	94.7 (-5.0 %)	87.8 (-12.0 %)	65.4	61.4 (-6.1 %)	52.8 (-19.2 %)	49.6 (24.1 %)

Anti-drought capacity

Runs theory

- Method to calculate drought severity
- Severity is the total sum of reservoir storage shortage for one drought
- The storage deficiency is estimated from truncation level
- Measured all set of drought severity during the standard period S0 (2007~2016)
- And used them in frequency analysis

Anti-drought capacity

Frequency analysis

	2-year	3-year	5-year	10-year		
Severity (10 ⁶ m ³ day)	3,721.4	4,729.7	5,852.6	7,283.7		
		5-10 year frequency drought				
Fraguancy	S0 (2007~2016)	S1 (2017~2026)	\$2 (2027~2036)	\$3 (2037~2046)		
Frequency	2	4	1	_		

- Drought Severity with return period of 2, 3, 5, and 10 years are estimated
- Drought with the intensity of 5-10 year return period
- 4 times in S1 and S2, 5 times in S3.
- For S3 (2037~2046) period, the drought of 5 to 10 year return period occurred nearly two times compared to the standard period S0 (2007~2016).

Summary and Findings

- For Boryeong Dam where issued an administrative order for municipal water supply restriction by 2014~2016 consecutive extreme drought, the future anti-drought capacity of the dam was evaluated using SWAT watershed hydrology, climate change scenarios and multiple linear regression derived dam release scenarios.
- <u>SWAT analysis results</u>
 - For S3 (2037~2046) CMIP5 RCP8.5 scenarios, the spring precipitation was projected to decrease 30.5% and the dam storage of the period decreased 23.6%. In particular, the storage of spring, summer and winter season decreased 34.0%, 25.9% and 24.1% respectively. This requires a new dam operation rule by controlling dam releases from the autumn Typhoons and heavy rains of the previous year.
- <u>Frequency analysis results</u>
 - For S3 (2037~2046) period, the drought of 5 to 10 year return period occurred nearly twice times compared to the standard period S0 (2007~2016).
- It is believed that SWAT model is available for predicting future drought prediction.