A Salinity Chemistry and Transport Module for SWAT

Ryan Bailey Saman Tavakoli-Kivi Xiaolu Wei

2018 SWAT Conference Brussels, Belgium September 17-21, 2018

Outline

- 1. The Salinity Problem
- 2. Development of Salinity Transport Module for SWAT
- 3. Application to Arkansas River Basin, Colorado
- 4. Future Work

Salinity in Agricultural Groundwater Systems

Semi-Arid / Arid Agricultural Areas:

- Excessive irrigation
- Seepage from earthen canals
- Inefficient drainage systems
- Consequent evaporative concentration

High soil salinity High groundwater salinity

https://www.agric.wa.gov.au/soilsalinity/dryland-salinity-extent-and-impact

Salinity in Agricultural Groundwater Systems

Semi-Arid / Arid Agricultural Areas:

- Excessive irrigation
- Seepage from earthen canals
- Inefficient drainage systems
- Consequent evaporative concentration

High soil salinity High groundwater salinity

- Threshold: the EC of soil saturated extract (ECe) when yield starts decrease.
- Slope: % of yield decrease when ECe increased by 1 dS/m.

Salinity in Agricultural Groundwater Systems

Global Salt-Affected Soils

Wicke et al. (2011) Energy and Environmental Science

- 230 million ha of irrigated land \rightarrow 20-25% severe salinity
- Salt-affected area increases by 1-1.5 million ha / year
- 27-28% of irrigated land \rightarrow decline in crop productivity

Watershed Salt Transport

Objectives

- 1. Develop Salinity transport module for SWAT
- 2. Test model in an irrigated watershed
- 3. Assess Salinity and Crop Yield under changes in climate, land use, and water management strategies

Salinity Module for SWAT

Lower Arkansas River Valley, Colorado

Colorado, USA

Lower Arkansas River Valley, Colorado

Colorado, USA

John Martin Reservoir Downstream Study Region

Lower Arkansas River Valley, Colorado

Colorado, USA

ECe (dS/m)

3.75 7.5

15 kr

Lower Arkansas River Valley, Colorado

Colorado, USA

SWAT Model

- Relates total applied irrigation water to the volume diverted from the river, according to water rights
- Includes seepage from earthen irrigation canals to the shallow aquifer
- 1999-2009 simulation period
- Tested against streamflow at 5 gages (3 in River, 2 tributaries)

Wei, X., Bailey, R.T., and A. Tasdighi (2018), Using the SWAT Model in Intensively Managed Irrigated Watersheds: Model Modification and Application. *J. Hydrologic Engineering*, in press.

SWAT Model (Salinity)

- Initial gw salt ion conc. / salt mineral \rightarrow based on field data / NRCS soil survey
- Initial soil water ion conc. / salt mineral \rightarrow based on field data / NRCS soil survey
- Chemical equilibrium parameters \rightarrow based on literature
- Mass loading of Salt ions (kg/day) at inlet → Gage data (flow, EC)

SWAT Model

Results Timpas Creek Concentration 3000 2500 2000 SO4 (mg/L) SWAT 1500 Observed 1000 5000 500 4000 0 07/24/1998 09/01/2002 10/10/2006 11/18/2010 TDS (mg/L) 3000 SWAT 2000 Observed • 1000 100 0 80 07/24/1998 09/01/2002 10/10/2006 11/18/2010 CI (mg/L) 60 SWAT 40 Observed 20 0 07/24/1998 09/01/2002 10/10/2006 11/18/2010

Future Work

- Further Calibration and Testing of Model
 - Further assessment of salinity stress on crop yield
 - Assess Salt Transport and Crop Yield under changes in climate, land use, and water management strategies