

Development of a water resource management platform during low water periods in the SUDOE region

Water quality regulation functions under climate change in South-Western Europe catchments

<u>Mélanie Raimonet</u>, Roxelane Cakir, Sabine Sauvage, Magali Gerino, Robert Vautard, José Miguel Sánchez-Pérez

Brussels, 19 Septembre 2018

Climate change impacts on hydrology in Europe

Climate change impacts on hydrology in Europe

Major impacts in the South of Europe :

- 沟 water ressource
- changes in hydrological regime
- A extreme events

Climate change impacts on biogeochemistry?

- \circ Nutrient
- \circ Sediment

Ecological functions

Sediment retentionNitrate removal

Export to the ocean

Climate change impacts on biogeochemistry?

www.marlboroug

Ecological functions

Sediment retentionNitrate removal

Export to the ocean

Ecological functions of water quality regulation

result from a group of physical / biological / biogeochemical processes

Ecological functions of water quality regulation

result from a group of physical / biological / biogeochemical processes

Net balance IN – OUT COT Stream Solute Workshop (1990)

The AGUAMOD project

talk Dr. Sánchez-Pérez et al., session I1, Friday @12am

The AGUAMOD project

talk Dr. Sánchez-Pérez et al., session I1, Friday @12am

The AGUAMOD project

talk Dr. Sánchez-Pérez et al., session I1, Friday @12am

One objective: to evaluate impacts of global changes on ecological functions of water regulation

SWAT modelling

Calibration/Validation: past talk Ms. Cakir et al. today @2:40pm

- 263 subbasin ~ streames •
- 12 834 HRUs ٠
- 633 000 km² •

Human activities:

Climate forcing

Climate forcing

Climate forcing

Calibration/validation of hydrology with MESAN reanalyses

2000/10

Calibration: 2000/05 Validation: 2006/10

Calibration/Validation: past talk Ms. Cakir et al. today @2:40pm

Validation of hydrology with climate models (BC-CORDEX)

1990/2059

General annual streamflow decrease, more intense in the South

1990/2059

Max average decrease in 70 yrs: -185 m3/s -98% summer streamflow

Impacts of climate change on ecological functions

Ecological function = group of physical / biological / biogeochemical processes (e.g. **sediment retention**, **nitrate removal**)

Impacts of climate change on ecological functions

Ecological function = group of physical / biological / biogeochemical processes (e.g. **sediment retention**, **nitrate removal**)

Impacts of climate change on ecological functions

Ecological function = group of physical / biological / biogeochemical processes (e.g. **sediment retention**, **nitrate removal**)

Impacts of climate change on sediment retention

Dominance of sediment retention in rivers of South-Western Europe

Impacts of climate change on sediment retention

Impacts of climate change on nitrate removal

Dominance of nitrate removal in rivers of South-Western Europe, except large downstream rivers

Impacts of climate change on nitrate removal

Preliminary analysis

Preliminary analysis

Trend Net balance NO3

Preliminary analysis

Trend Net balance NO3

Trend Streamflow

Altitude

%agro-forestry (landuse)

Preliminary analysis

Trend Net balance NO3

Trend Net balance SED

Trend Streamflow

Altitude

%agro-forestry (landuse)

Preliminary analysis

Trend Net balance NO3

Trend Net balance SED

Trend Streamflow

Altitude

%agro-forestry (landuse)

Hotspots of 'nitrate removal increase' :

- downstream of large rivers
- where %agro-forestry is high
- where sediment retention also increases

Conclusions

• Effects of climate change in South-Western Europe (1990-2059):

23	

Streamflow	\mathbf{Y}
Sediment retention	7
Nitrate removal	↗ in main rivers ↘ in small streams

Conclusions

• Effects of climate change in South-Western Europe (1990-2059):

	-
K	

Streamflow	7	
Sediment retention	7	E
Nitrate removal	↗ in main rivers ↘ in small streams	u

Explanatory factors : upstream/downstream landuse

Conclusions

• Effects of climate change in South-Western Europe (1990-2059):

Dix Case	1
1 Alest	
	and a state

Streamflow	کر	
Sediment retention	7	Explanatory factors :
Nitrate removal	\nearrow in main rivers	landuse
	ightarrow in small streams	

Perspectives

• Investigate multiple factors explaining ecological functions variations

Conclusions

• Effects of climate change in South-Western Europe (1990-2059):

OK TAR	
SARR	
	3

Streamflow	\mathbf{Y}	
Sediment retention	7	Explanatory factors :
Nitrate removal	\nearrow in main rivers	upstream/downstream landuse
	ightarrow in small streams	

Perspectives

- Investigate multiple factors explaining ecological functions variations 0
- Include more climate projections and combine climate scenarios Ο with changes in direct human pressures (e.g. population, landuse)

Conclusions

• Effects of climate change in South-Western Europe (1990-2059):

OK TAR	
SARR	
	3

Streamflow	کر	
Sediment retention	7	Explanatory factors :
Nitrate removal	\nearrow in main rivers	upstream/downstream landuse
	ightarrow in small streams	

Perspectives

- Investigate multiple factors explaining ecological functions variations 0
- Include more climate projections and combine climate scenarios Ο with changes in direct human pressures (e.g. population, landuse)
- Quantify impacts on export to the ocean

Development of a water resource management platform during low water periods in the SUDOE region

Thank you for your attention.

