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Outline

» General background

» D1: Soil water and wetland module development and

testing

» D2: Soil temperature module for characterizing freeze-

thaw cycle (Moved to backup slides)

» D3: Coupled terrestrial-aquatic carbon cycling at the

watershed scale
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Global Sustainability Challenges

climate change

Nitrogen Pollution

Johan RockstrOm (2009, Nature)

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



D1: Physically-based soil water routing

Junyu Qi?, Xuesong Zhang®®, Gregory W. McCarty®, Ali M. Sadeghi®, Michael H.
Cosh¢, Xubin Zeng?, Feng Gao®, Craig S. T. Daughtry®, Chengquan Huang®, Megan
W. Lang!, Jeffrey G. Arnolde, Sangchul Lee®, Glenn E. Moglen®

a. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA.

b. Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of
Maryland, College Park, MD 20740, USA;
c. USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705-2350 USA

d. Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA.
e. Department of Geographical Science, University of Maryland, College Park, MD 20742, USA
f.  U.S. Fish & Wildlife Service - Ecological Services, Falls Church, VA 22041-3803, USA

g.  USDA-ARS Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA
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SWAT built-in vs. Richards equation

> SWAT built-in method @i = Wi = FC) |1 - exp (5etd))

where FC; is the soil water content at field capacity (mm), K, ; is the
saturated hydraulic conductivity (mm h-1), SAT. is the amount of water
when completely saturated (mm) for ith layer.

» Richards equation

a0 ad [ dh
Richards, 1931 Fraatel L (a t+ 1)] -0

Zeng and Decker, 2009 3¢ =< [k (22| - o
where 6 is the volumetric soil water content (mm?3 mm-3), tis time
(s), z is the depth below soil surface (mm; positive downwards), k
is the hydraulic conductivity (mm s1), h is the soil matric potential
(mm), h, is the equilibrium soil matric potential (mm), and Qis a
soil water sink term (mm mm- s1). -~

Qi, J., Zhang, X., McCarty, G.W., Sadeghi, A.M., Cosh, M.H., Zeng, X., Gao, F., Daughtry, C.S., Huang, C., Lang,
M.W. and Arnold, J.G., 2018. Assessing the performance of a physically-based soil moisture module integrated
within the Soil and Water Assessment Tool. Environmental Modelling & Software. 765

IRY



Richards equation based soil water routing

SWAT layers —
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Finite difference with time using the fully
implicit scheme resulting in a discretized
equation as,

oyt o]

A= =41~ 4

where Az;is the thickness (mm) of soil
layer i, At is the time step (s), 6/*" and 6/
are water content of soil layer j for n+1 and
n time step, q/*" is the water flux across
the interface zld,, q;,"*" is the water flux
across interface z/d; ,, and s;is a layer
averaged water sink term defined positive
for flow out of the layers (mm s1) for time
step n+1.
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Conceptual framework of soil water module

Sub-daily
precipitation

Surface runoff

Green & Ampt

Sub-daily
infiltration

-\ — — =\

e

(
o
|
|

Subjdaily| ~ Water |
l°°p| content Transpiration

| I
I
| I
I
\

Lateral flo

~ 7

Percolation

USDA-LTAR sites

@Station-4

@Station-7

Chesapeake Bay @Station-2
@Station-6
@& Station-1

0 5 10 20 Kilometers
I T P T |

Legend

@ Monitoring Stations
D Tuckahoe Creek Watershed
|:| Choptank River Watershed

Proudly Operated by Battelle Since 1965



Simulated vs observed soil water content
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Soil water coupling strength between layers

» Improved coupling strength between soil water in different
layers is critical for effective assimilation of remote
sensing observations of surface soil moisture
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Average soil moisture coupling strength between three soil layers during dry
and wet periods, respectively, for the 10 stations. Numbers 1, 2, and 3 denote
soil moisture at soil depths of 5, 10, and 50 cm, respectively. -
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Physically-based wetland |\ 7 |« =
water dynamics module EEARLS Y
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A USGS gauge station
Greensboro watershed
Choptank river watershed
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o Hydrological cycle and water balance for a
conceptualized wetland in a watershed

Site 2
= MNatural Wetiand
@ Restored Wetland

@ Primary Station (Rain gauge)

o Field data of water level measured in natural
and restored forest wetlands as part of USDA
LTAR and CEAP
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Wetland module evaluation for wetlands
without impermeable layer
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water level for the restored
wetland at Site #2 from 2016 to
2017.
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Wetland module evaluation for wetlands with

iImpermeable layer

Observed vs. simulated daily
water level for the restored
wetland at Site #1 in 2016.

Observed vs. simulated daily
water level for the nature
wetland at Site #1 in 2016.
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D3: Coupled terrestrial-aquatic carbon
cycling

Xuesong Zhang®?, Qichun Yang?, Jeffrey G. Arnold®, Raghavan Srinivasand,
Roberto C. Izaurralde?, Jimmy R. Willimans®, Xinzhong Duf, Rajith Mukundans,

Linh Hoangg, Michael Abraha®™!, Stephen Del Grosso/, G.P. Robertson™* Jiquan
ChenM!, Jia Deng™

a.

Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of
Maryland, College Park, MD 20740, USA;

Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA;
USDA-ARS Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA;

Department of Ecosystem Science and Management, Texas A&M University, College Stations, TX 77845,
USA;

Blackland Research & Extension Center, AgriLIFE Research, 720 E. Blackland Road, Temple, TX 76502,
USA;

University of Alberta, Edmonton, AB T6G 2R3, CA;

New York City Department of Environmental Protection, 71 Smith Ave, Kingston, NY 12401, USA;

Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824 USA
W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060 USA
USDA-ARS, Fort Collins, CO 80526, USA

Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan
48824 USA

Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, ~
Michigan 48824 USA;

Institute for the Study of Earth, Oceans and Space, University of New Hampshire Durham, NH 03824 st
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Terrestrial carbon
module structure

Eroded Closs
from surface

» Schematic
representation of new
SOM-residue
dynamics in SWAT.

» Algorithms are derived
from EPIC, CENTURY,
and DSSAT.

Zhang, X., lzaurralde, R.C., Arnold, J.G.,
Williams, J.R. and Srinivasan, R., 2013.
Modifying the soil and water assessment tool
to simulate cropland carbon flux: model
development and initial evaluation. Science of
the Total Environment, 463, pp.810-822.

Zhang, X., 2018. Simulating eroded soil
organic carbon with the SWAT-C
model. Environmental Modelling &
Software, 102, pp.39-48.
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Cropland carbon

fluxes at six AmeriFlux

towers
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Forest growth and carbon balance

6 deciduous forest sites, 2 evergreen sites, and 2 mixed sites
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Location of ten selected AmeriFlux sites for model performance evaluation (US-Ha1: Harvard Forest;
US-Ho1: Howland Forest Main; US-MMS: Morgan Monroe State Forest; US-Syv: Sylvania
Wilderness; US-UMB: UMBS; US-WCr: Willow Creek forest; US-MOz: Missouri Ozark; US-WBW:

Walker Branch; US-NR1: Niwot Ridge; US-PFa: Park Falls)

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



17

Parameter calibration of SWAT built-in forest
module

Parameter Name Unit Default Calibrated
values values

FRST FRSD  FRSE / FRST FRSD  FRSE \
BIO E Radiation use kg biomass 15 15 15 24-27 26-30 16-18
efficiency /ha/(MJ /mz) / (25.5)* 282)* (17)*
BLAI Maximum unitless 5 5 5 4-5 4-5 34
Leaf area index ( (4.5)* 4.6)* (3.9)*
T OPT Optimum Degree (°C) 30 30 30 25 23-25  20-25
temperature \ (25)* 24)* (225 *
T BASE Base temperature  Degree (°C) 10 10 0 10 10 0-5
\ (10) * (10)*  (2.5)* /

BIO LEAF  Leaftobiomass  unitless 0.3 0.3 0.3 0.02-0.05 0.02-0.06 0.015-0.02
fraction (035)*  (0.033) *  (0.02)*

Calibrated parameters are consistent with previous studies, including Hilker et al.,
(2012); Schwalm et al. (2006); Zhu et al.(2006); Guo et al. (2015)

Yang, Q. and Zhang, X., 2016. Improving SWAT for simulating water and carbon fluxes of forest SRY
ecosystems. Science of the Total Environment, 569, pp.1478-1488.
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		Parameter	

		Name

		Unit

		Default

values

		Calibrated

values



		

		

		

		FRST

		FRSD

		FRSE

		

		FRST

		FRSD

		FRSE



		BIO_E

		Radiation use efficiency

		kg biomass /ha/(MJ/m2)

		15

		15

		15

		24-27

(25.5)*

		26-30

(28.2) *

		16-18

(17) *



		BLAI

		Maximum 

Leaf area index

		unitless

		5

		5

		5

		4-5

(4.5)*

		4-5

(4.6)*

		3-4

(3.5)*



		T_OPT

		Optimum temperature

		Degree (ºC)

		30

		30

		30

		25

(25)*

		23-25

(24)*

		20-25

(22.5) *



		T_BASE

		Base temperature

		Degree (ºC)

		10

		10

		0

		10

(10) *

		10

(10)*

		0 – 5

(2.5) *



		BIO_LEAF

		Leaf to biomass fraction

		unitless

		0.3

		0.3

		0.3

		0.02-0.05

(0.035)*

		0.02-0.06

(0.033) *

		0.015-0.025

(0.02)*








Performance of SWAT built-in forest module:
default vs. calibrated parameters
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Calibrated parameters




SWAT-N20 module based on DayCent and model
test at Kellogg Biological Station, M
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Legend

Field Sites
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A Corn site (M1), a
-, switchgrass site (M3), and

a reference site (M4) in the
Marshall Farm Scale-up
fields of GLBRC were
selected for this study.

Figure 1. Locations of the three GLBRC scale-up experiment sites

B Observation

8 Default Simulation

m Calibrated simulation
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Del grosso, S., D. S. Ojima, W.

J. Parton, E. Stehfest, M. Heistemann, B. De
angelo, and S. Rose. 2009. Global scale
DAYCENT model analysis of greenhouse gas
emissions and mitigation strategies for
cropped soils. Global and Planetary Change
67:44-50.

Yang, Q., Zhang, X., Abraha, M., Del
Grosso, S., Robertson, G. P, & Chen, J.
(2017). Enhancing the soil and water
assessment tool model for simulating N20
emissions of three agricultural

systems. Ecosystem Health and
Sustainability, 3(2), e01259.



Aquatic carbon cycling in SWAT

Ongoing development of an aquatic carbon
cycling algorithm based on QUAL2K
(Chapra et al. 2003) and CE-QUAL-W2
(Cole and Wells 2006), which was tested in
the Cannonsville watershed and captured
well daily DOC fluxes at the watershed
outlet

Legend Land use types
/N Water quality station Agriculture

@ USGS station B Residential
Stream - Forest
Kilometers - Water

| |
0 5 10

20

Aquatic ecosystems

Inflow, outflow, Phytoplankton/
velocity, water Bottom Algae

Al il e Dissolved inorganic .
temperature, light — Dissolved oxygen
extinction, CN.P
transmission loss, organic C, N, P organic C, N, P
bank 'storage, Labile particulate Labile dissolved
sed'n'nent organic C, N, P organic C, N, P
deposition and
transport

Aerobic Dissolved|C, N, P
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lllustration of the capability of the aquatic
carbon module within SWAT for simulating
DOC fluxes near the outlet of the Cannonsville
watershed.
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Coupled terrestrial-aquatic carbon cycling

» Carbon cycling in
river networks is
relevant to the
fate of 2-6 Pg C

yri.

» Lacking reliable
quantification of
the aquatic
carbon balance.

Biophysical and
Biogeochemical Cycle
Plant growth and development,
nutrients uptake, nitrogen fixation,
litter fall, manure and fertilizer,
soil microbial decomposition and
respiration, nutrient leaching, and
particulate and dissolved nutrients ]
loss with runoff and soil erosion. capillary effects, groundwater
recharge, and base flow.

N Za

Human Activities
land use change, crop rotation, planting,
irrigation, tillage, harvesting, residue
management, tile drainage, grazing, water
use, and structural conservation practices.

Hydrological Cycle
Precipitation interception, snow

cover and melt,
evapotranspiration, infiltration,
surface runoff, peak rate,
transmission loss, soil water
percolation and uptake, interflow,

Terrestrial

Diffuse runoff, sediment, particulate and dissolved C, N, and P

Phytoplankton/
Bottom algae

Dissolved inorganic el e
C.N. P
Refractory particulate Refractory dissolved
organic C,N, P organic C, N, P

Inflow, outflow, velocity.
water depth, water
temperature, light
extinction, evaporation,
transmission loss, bank
storage, sediment
deposition and transport

Labile particulate Labile dissolved
organic C,N. P organic C,N. P

Aerobic demand .

Point source
loads

(uorenuadUod L0 pue ‘paadg puipy “AJIPILINE] AR ‘UoneIpel Je[os ‘alnjenduwn) iy ‘uone)dioalg)
SIIALIP JdLIdydsouny



22

Next Steps

» Terrestrial carbon module is available in the latest SWAT
model code since 2016, and Jeff Arnold and Nancy
Sammons have incorporated the code into SWAT-Plus for
testing.

» More examination and evaluation of the soil water and
forest growth modules and deliver to released SWAT
version.

» Continue development and testing of aquatic carbon
cycling.

e

Pacific Northwest
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Thank you for your attention!
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D2: Soil temperature and freeze-thaw cycle

Junyu Qi?, Xuesong Zhang®°

a. Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University
Research Ct, College Park, MD, 20740, USA;

b. Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland,
College Park, MD 20740, USA;

Pacific Northwest
NATIONAL LABORATORY

24 Proudly Operated by Battelle Since 1965



Physically based soil temperature and
energy balance module
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A physically-based soil temperature
module was developed based on
heat transfer theory in snow and soil
layers described as in Yin and Arp
(1993):
oT 3 d (k OT\s
ot  9x\C ax)cC
where T is the temperature, t
represents the time step (in days),
k is the thermal conductivity, C is
the volumetric heat capacity, x is
the vertical distance from the air-
soil or air-snow interface, and s is
the latent heat source/sink term.
he'd
Pacific Northwest

NATIONAL LABORATORY
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Field experimental sites for model evaluation

Legend
@ USCRN Station
[1State Boundary

Daily surface and soil
temperature records at 5, 10,
20, 50, and 100 cm depths
derived from six stations of the
NOAA’s U.S. Climate
Reference Network (USCRN)
within the Upper Mississippi
River Basin.

Minnesota ®
54932

Wisconsin

Illinois  ©
54808

0 400 800 1,600 Kilometers
e e e e ]

@
23909

0 75 150 Kilometers
—+—

 State | StationID ___| Subbasin____| Slope (%) _| Data Used

54932 30 0-2 2011-2015
54903 56 0-2 2009-2015
54811 81 0-2 2009-2015
54902 90 0-2 2009-2015
23909 121 0-2 2009-2015
54808 128 0-2 2009-2015

Pacific Northwest
NATIONAL LABORATORY
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Simulated vs. observed soil temperature
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Simulated vs. observed soil temperature
at 5 cm depth at six USCRN stations.
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Simulated vs. observed soil temperature at
100 cm depth for the six USCRN stations.
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Model assessment for freeze-thaw cycle and

frozen depth

Simulated vs observed frozen
(temperature < 0 °C) depth at the six
USCRN stations. Left vertical axis is
in °C.
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Implications of freeze-thaw cycle
representation for hydrologic modeling
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Simulated mean 5 cm soil temperature for

subbasins of UMRB in five reprehensive days of
2011 by the TSWAT and SWAT

Percolation (mm)
= 0- 100
=9100- 200

100 - 200
200 - 300

300 - 400
200-300 400 - 500
=300 - 400 500 - 600
= 400 - 500 = 600 - 700
0 150 300 Kilometers. o 150 300 Kilometers
e

Percolation (mm) =100 - 200

=0 - 100 9200 - 300
=100 - 200 300 - 400

200 - 300 Fia 7400 - 500
=300 - 400 L =500 - 600 bl ™%
=400 - 500 & =600 - 700 o
0 150 300 Kilometers. 0 150 300 Kilometers

Simulated percolation, surface runoff

(SurR), and in the UMRB by TSWAT
and SWAT in 2011.
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