

Agroscope

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

SWAT 2018 17-21 September Brussels, Belgium

Impact analysis of land management scenarios on ecosystem services using SWAT

Nina Zarrineh ^{1,2} – Karim Abbaspour³ – Ann van Griensven⁴ – Annelie Holzkämper^{1,2}

Agroscope, Climate and Agriculture Group, Research Division Agroecology and Environment, 8046 Zurich, Switzerland
 Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
 Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, CH-8600 Dübendorf, Switzerland
 Vrije Universiteit Brussel, Department of Hydrology and Hydraulic Engineering, Pleinlaan 2, 1050 Brussels, Belgium

5 IHE-Delft Institute for Water Education, Department of IWSG, 2601 DA Delft, The Netherlands

Soil as a Resource National Research Programme NRP 68

• Food

Reference: livestrong.com

- Food
- Fodder

Reference: freestockphotos.biz

- Food •
- •
- •

Reference: cleanwater.news

- Food
- Fodder
- Clean water ...

- We cause problems:
- Nutrient leaching
- Soil loss
- Water quality and quantity

Reference: catchmentguidelines.org.mw

• Towards multifunctional agricultural landscapes in Europe (TALE): Assessing and governing synergies between food production, biodiversity, and ecosystem services

• How can land management be improved to provide better synergies?

Swiss case study: Broye catchment

Research questions

- What is the current status of ecosystem services in the study area?
 What are the main conflicts between them?
- What are the potentials of land management scenarios to reduce conflicts between different ecosystem services?

Research questions

- What is the current status of ecosystem services in the study area?
 What are the main conflicts between them?
- What are the potentials of land management scenarios (land sparing vs. land sharing) to reduce conflicts between different ecosystem services?

Ecosystem services	Indicator
Water quantity regulations	Low flow $[m^3/s]$, defined as 5 th percentile of daily river discharge for the entire period.
Water quality regulation	Yearly nitrate concentration [mg N/l] in the outlet of the catchment
Erosion regulation	Yearly transported sediment [t/ha]
Food provision	Agricultural benefit [Mio CHF/year] = benefit from crop & mild production – applied fertilizer cost
Climate regulation	Greenhouse gas (GHG) emissions [CO ₂ equivalent kt/year]

SWAT model setup for 35 years (1981-2015):

- 5 years for warm up period (1981-1985)
- 18 years for calibration
- 12 years for validation

SWAT model setup for 35 years (1981-2015):

- 5 years for warm up period (1981-1985)
- 18 years for calibration
- 12 years for validation

SWAT is calibrated by an iterative way with Swat-cup and R in 2 steps : First water quantity (daily river discharge and low flow) and then water quality (monthly nitrate)

SWAT model setup for 35 years (1981-2015):

- 5 years for warm up period (1981-1985)
- 18 years for calibration
- 12 years for validation

SWAT is calibrated by an iterative way with Swat-cup and R in 2 steps : First water quantity (daily river discharge and low flow) and then water quality (monthly nitrate)

233 sets of parameters are selected for generating land management scenarios' results

Land sharing vs land sparing

- Unlimited irrigation in lowlands
- Intensification: all permanent grassland transformed to intensive, increase of potato, increasing fertilizer by 25%
- Transforming arable areas on steep slope to intensive meadow
- Low fertile areas turned to the nature protection areas (forest)

- No irrigation
 - Extensification: all permanent grasslands transformed to extensive, increase of ley and grain legumes within rotations

Land management application results in SWAT model inputs:

Land management application results in SWAT model inputs:

Different land use areas [ha] in different land management scenarios

Land use	Land management	Baseline	Land sharing	Land sparing	
Permanent grasslands	Intensive	9184	0	20007	
(Pasture and meadow)	Extensive 3678		12862	0	
Arable	Total arable area	29576	29576	20178	
	Potato	1506	1252	2281 (+6%)	
	Field pea	1791	3190 (+5%)	1143	
	Temporary ley	8254	10219 (+7%)	5257	
	Irrigated arable area	1130 (4%)	0	6096 (30%)	
Forest		14635	14635	16889	

	Agricultural benefit	• E • I • I	Baseline Land sharing Land sparing			
Arable benefit		Livestock benefit (milk) agricultural productions [Mio CHF/year] for the three scenarios:				
	Fortilizer	Scenarios	Crop production benefit	Applied fertilizer cost	Livestock benefit	Total benefit
	cost	Baseline	62.14	5.49	86.83	143.48
		Land sharing	52.59	4.71	29.24	77.12
		Land sparing	52.74	5.97	116.98	163.75

Impact of parameters uncertainty in land management studies

Agroscope

Impact of parameters uncertainty in land management studies

- Main conflict/trade-off in the case study: benefits from agricultural production are in conflict with diffuse pollution and greenhouse gas emissions.
- None of the investigated scenarios could **reduce** the dominant land use conflict in general, but only induce a **shift** in trade-offs.
- Land sparing is the least preferable according to stakeholders; and baseline and land sharing scenarios are more preferable.

