

Land sparing or sharing or something in between?

Multi-objective land use optimization based on scenario analysis

Michael Strauch, Anna Cord, Anne Jungandreas, Andrea Kaim, Martin Volk

SWAT2018 Conference, Brussels

Intro

Multiple demands on agricultural landscapes

Food Bioenergy

Water quality
Groundwater recharge
Environmental flow
Hydropower

Active Passive

Species richness Functional diversity

Trade-offs

Land use intensity and landscape configuration

VS.

Land sharing

Land sharing/sparing debate, e.g.:

Phalan et al. / *Science* 333 (2015), 1289-1291 Von Wehrden et al. / *Landscape Ecol* 29 (2014), 941–948

Workflow

Scenario development (stakeholder discussion)

MOR Global storyline

LSH, LSP, LBA **EU/national storylines**

Common storylines

for land sharing, land sparing, and business as usual

> Spatial targeting of management options

Scenario simulations

SWAT

crop yield, runoff, water quality

Biodiversity model

bird species distribution

Result

Scenario impacts on ESS and biodiversity

Comparison

CoMOLA

Multi-objective optimization

Linking **SWAT**, biodiversity model with **NSGAII**

Result

Landscape potential (trade-off curves)

Workflow

| Parameter | Einhelt | Heste | Eith | LSP | Est | Landmirrong | Landmir

Scenario development (stakeholder discussion)

LSH, LSP, LBA EU/national storylines

MOR Global storyline

Common storylines for land sharing, land sparing, and business as usual

Procedure and examples in the TALE Learning Environment tale.environmentalgeography.nl

crop yield, rui

Biodiversity model

bird species distribution

NSGAII

Result

Scenario impacts on ESS and biodiversity

Result

Landscape potential (trade-off curves)

Where can we be more efficient with measures?

GitHub

Lossa River Basin (141 km²)

Scenarios

Spatially explicit land cover changes

Scenarios

General land cover /land use changes

	Current	B. as usual	Land sharing	Land sparing
Crop rotations	According to crop statistics	Slightly less diverse	Slightly more diverse	Strongly less diverse
Org. farming (%)	4	5	20	0
Fertilizer (kg N/P)	112/31	105/36	81/30	122/39
Tillage (% conserv.)	60	70	100	60
Linear elements (e.g. hedges)	According to land use map	No change	Increase	Decrease

1) Soil and Water Assessment Tool (SWAT)

- Process-based integrated watershed model
- Calibrated and validated for streamflow, total loads of nitrogen,
 phosphorus and suspended solids as well as crop yields
- Basin-wide **agricultural gross margin** (in €) calculated from simulated crop yields and crop-specific costs and market prices

2) Bird habitat model

- Nine Random Forest models, one for each of the nine observed bird species breeding in agricultural sites of the Lossa Basin
- Taking into account up to 21 predictor variables (climate, soil, land use, linear elements and distance parameters)
- Output: suitable habitat for each of nine species

Results

Optimization

Multi-objective optimization beyond scenario analysis

Optimization

Optimization

Outlook

Analysis of optimization results

Why did those land cover/management patterns emerge?

=> spatial factor analysis

Which solutions are preferred?

=> involve stakeholders

Which specific management recommendations can be derived?

=> visualize allocation of single measures

Conclusions

- Scenario analysis revealed trade-offs among agricultural production and biodiversity (and water quality)
- Multi-objective optimization of land use at HRU level as a way to minimize the trade-offs (non-dominated solutions outperform stakeholder-based scenarios for land sharing and land sparing)
- Challenging: In-depth-analysis and interpretation of results as well as illustration of model uncertainties
- Food for discussion with stakeholders and decision-makers on "where to put things" in landscapes to optimally provide multiple ecosystem services and biodiversity at the same time

Annex

Annex

SWAT model performance

Annex Scenario Design: Land use/cover 100 -10.1 10.1 10.9 LBA 12.5 19.6 22 24.3 22 75**-**LULC 6.8 5 6.8 Built-up area SQ 13.8 7 Percentage **Forest** 7 **LSP** Pasture, int. 50 -Conversion rules Pasture, ext. Cropland Other 57.2 53.9 50.7 49.1 25 -SQ = Status quo LSH LBA = Business as usual LSP = Land Sparing 2.6 3.4 2.6 2.6 LSH = Land Sharing SQ LBA LSP LSH

Annex

Scenario Design: Agricultural management

0 -

SQ

LBA

LSP

LSH

20

LSH

LBA

LSP

SQ

Scenario Design: Agricultural management

Annex

Scenario Design: Linear elements (linE)

Scenario Design: Linear elements (linE)

Biodiversity on the example of birds

Breeding birds dataset from Saxon State Agency of Environment, Agriculture and Geology (LfULG)

13 species with sufficient number of observations for modeling of breeding habitat within the lower part of the Mulde River basin

Predictor variables

Land use

(within a radius of 250 m)

- Urban
- Transportation
- Cropland
- Pasture (total, extensive, intensive)
- Forest (total, deciduous, coniferous, mixed)
- Horticulture
- Wetlands
- Water
- Barren

Soil

- Available water capacity
- Bulk density
- Carbon content
- Satur. hydraulic conductivity

Linear elements

- Share on HRU area
- Share on HRU perimeter
- Forest edges

Distance parameters

Distance to:

- Next stream
- Next road

Climate

- Temperature
- Temperature ranges
- Precipitation

Presence and absence

Presence data points available for each species:

Data points for other species outside the buffer considered as Pseudo-absence:

500 m buffer around each data point to avoid overlay of predictor variables

Variable selection

-> Reduction of the 26 variables using:

(Kiebitz)

(for each species ten repetitions)

Variable selection

(Kiebitz)

Linear elements

- Share on HRU area
- Share on HRU perimeter
- Forest edges

Land use (within a radius of 250 m)

- **Urban**
- **Transportation**
- Cropland
- Pasture (total, extensive, intensive)
- Forest (total, deciduous, coniferous, mixed)
- Horticulture
- Wetlands (species-specific need)
- Water
- Barren

Soil

- Available water capacity
- **Bulk density**
- Carbon content
- Satur. hydraulic conductivity

Distance parameters

Distance to:

- Next stream
- Next road

Climate

- **Temperature**
- Temperature ranges
- Precipitation

Modeling

Modeling with decision trees (Random Forest)

Prediction of breeding habitat

Model performance

The tool

CoMOLA

Constrained

Multi-objective

Optimization of

Land use

Allocation

NSGA-II and **GA** algorithms from *inspyred*Python package enhanced for land use
optimization (maps, models, constraints)

Constraint handling methods:

- Constraint-controlled genome generation
 & repair mutation (CG-CM)
- Constraint Tournament Selection (CTS)

Annex

https://github.com/michstrauch/CoMOLA