Does high evapotranspiration of plantation crops contribute significantly to the fluctuation of catchment discharge?

Suria Tarigan^a, Kerstin Wiegand^b Alexander Knohl^c, Christian Stiegler^c, Kukuh Murtilaksono^d

^{a,d} Dept. of Soil Sci. and Natural Res. Management, Bogor Agricultural University, Indonesia ^bEcosystem Modeling, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany ^cBioclimatology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, 8 Germany

Background

In our study area, former reports had correlated the water scarcity with high water use of the plantation crops.

Literatures indicated association between increased water use and water scarcity and

- Merten, J.,Röll, A.,Guillaume, T.,Meijide, A., Tarigan, S., Agusta, H., Dislich, C., Dittrich, C., Faust, H., Gunawan, D., Hendrayanto, Knohl, A., Kuzyakov, Y., Wiegand, K., Hölscher, D. 20.16 Water scarcity and oil palm expansion: social views and environmental processes. J. Ecology and Society 21(2):5
- Meijide, A., Röll, A., Fan, Y., Herbst, M., Niu, F., Tiedemann, F., June, T., Rauf, A., Hölscher, D., and Knohl, A.: Controls of water and energy fluxes in oil palm plantations: environmental variables and oil palm age, Agric. For. Meteorol., 239, 71–85, 2017
- Manoli, G. et al. Ecohydrological changes after tropical forest conversion to oil palm. Environ. Res. Lett. 13 (2018) 064035

Objective

Focus on water scarcity issue

The aim of this research is to investigate the relative contributions of increased ET and other factors like soil degradation to the change of the catchment hydrological cycle

Methodology

Research Location

 Field measurements in plantation crops (degraded soil) and forest/agroforests (non-degraded as reference)

• Soil characteristics/degradation

- Bulk density
- Infiltration
- Soil moisture/AWC
- Vegetation parameters
 - Evapotranspiration

SWAT model

- Parameterization
- Calibration
- Validation

Methodology

Catchment ETa Measurement : ETa = P-Q

Results and Discussion

Soil degradation indicators

Bulk density

Infiltration

Results and Discussion

Results and Discussion

Evapotranspiration (actual) - ETa

SWAT Parameterizations

Table 4. Change of model input value from non-degraded to degraded soil

SWAT parameter	Definition	Degraded	Non-
		soil	Degraded soil
HYDGRP	Hydrologic soil group	D	В
CN2	Curve number	83	65
$_$ SOL $_$ BD (g cm $^{-3}$)	Soil bulk density	1.2–1.3	1
OV_N	Manning's "n" value for overland flow	0.07	0.4
$SOL_K (mm h^{-1})$	Saturated hydraulic conductivity	30	400
AWC	Available water content	0.1	0.2

SWAT Calibration

FLOW_OUT_1

Conclusion

- The increased ET in oil palm plantation has a minor role on the catchment discharge fluctuations compared to that of soil degradation.
- Implication; It determines the plantation management, the management practices in oil palm plantation should be directed to reduce soil degradation and to promote higher infiltration rates.