

- CENTER FOR -ENVIRONMENTAL STUDIES - AT THE -URBAN - RURAL INTERFACE

FORESTRY AND WILDLIFE SCIENCES

MODELING STRATEGIES FOR A GROUNDWATER DOMINATED HEADWATER SYSTEM

¹Latif Kalin, ¹Rasika Ramesh, ²Mohamed Hantush, ³Mehdi Rezaeianzadeh, ¹Chris Anderson,

¹ School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama
² National Risk Management and Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio
³ National Water Center, National Oceanic and Atmospheric Administration, Tuscaloosa, Alabama

Baldwin County, AL

• 30% population growth between 2000 and 2010

MA

Loxley

DWI

Robertsdale

Foley

Orange

Beac

Gulf Shores

59

98

Ft-Morgan

90

• Increased concerns about regional and coastal water quality and quantity

Wetland alterations

"Headwater streams are buried more extensively than are larger streams at all levels of urban development (low, residential, suburban, and urban)" – Elmore and Kaushal (2008)

Watershed land use is an important driver of wetland function

Headwater slope wetlands

- Account for over two-thirds of the total stream length in a river
- Alterations can cause large scale impacts on ecological functions

2.5 5

South

The general plan

New Foley watershed

- Head watershed draining into headwater slope wetland (yellow star in map)
- Ungauged
- Stage data at discernible inflow from Aug 2013 – May 2014

Observed data

Observed inflow to wetland --SWAT generated flow to wetland 0.6 0.5 (sus) 0.4 0.3 0.2 0.1 0 8/10/2013 10/10/2013 110/2014 0/10/2013 2/10/2014 2/10/2014 11/10/2013 12/10/2013 10/2014

On inspection...

The problem

- Observed flows exceeded precipitation inputs
- However from repeated field visits, observed flow data is correct
- The \$\$\$ question -
 - Where is all this extra baseflow coming from?
 - Does the watershed (0.47 km²) have a very large ground watershed which SWAT fails to account for?

Objectives

- Can flows be modeled in SWAT relatively simply without having to resort to complex groundwater models?
- Provide useful approaches using SWAT model to predict flows in small watersheds with extensive ground watersheds

Topo map

Taking a closer look..

Approach 1

From the data,

SWAT streamflow + $[a + (b * SWAT baseflow)] \cong Observed streamflow$

Linear regression

Calibrating baseflow trend

Calibrating stormflow

$$(R^2 = 0.71, E_{NASH} = 0.62)$$

Calibrated baseflow + calibrated stormflow

Predicted flow = 13.352 * trend calibrated baseflow – 0.0038 + calibrated stormflow (R² = 0.74, $E_{\text{NASH}} = 0.67$)

Approach 2

Deep aquifer recharge $w_{deep} = \beta_{deep} \cdot w_{rchrg}$

Calibrate with negative RCHRGE_DP

Observed streamflow (cms)

Parameter_Name	Fitted_Value	Min_value	Max_value
1: r_CN2.mgt	0.285	0.126	0.421
2: v_ALPHA_BF.gw	0.082	0.001	0.173
3: v_GW_DELAY.gw	0.563	0.001	3.104
4: v_GWQMN.gw	41.312	25.939	43.589
5: v_GW_REVAP.gw	0.094	0.026	0.101
6: v_ESCO.hru	0.952	0.916	0.985
7: v_CH_N2.rte	0.144	0.125	0.254
8: v_CH_K2.rte	131.781	85.332	142.185
9: v_ALPHA_BNK.rte	0.386	0.232	0.740
10: rSOL_AWC().sol	-0.435	-0.441	-0.068
11: rSOL_K().sol	0.241	-0.098	0.442
12: r_SOL BD().sol	0.029	-0.217	0.134
13: v_RCHRG_DP.gw	-15.293	-19.559	-13.066

 $(P-\text{factor} = 0.84, R-\text{factor} = 1.04, R^2 = 0.78, E_{\text{NASH}} = 0.75$

SWAT+ANN for improved calibration

SWAT calibrated flow + ET + Precipitation = Improved hydrology. Prediction 1 hidden layer, 8 nodes, log-sigmoid transfer function $E_{\text{NASH}} = 0.89$

Results and conclusions

- Evaluated approaches for SWAT application in groundwater dominant watersheds
- Useful SWAT parameter tweak to model high groundwater systems without having to resort to complex groundwater models
- SWAT+ANN is a very useful tool for superior hydrology calibration

Calibrated baseflow + calibrated stormflow

Predicted flow = 13.352 * trend calibrated baseflow – 0.0038 + calibrated stormflow ($R^2 = 0.74, E_{NASH} = 0.67$)

 $(P-\text{factor} = 0.84, R-\text{factor} = 1.04, R^2 = 0.78, E_{\text{MASH}} = 0.75)$

SWAT+ANN for improved calibration

