SWAT Conference Brussels, Belgium

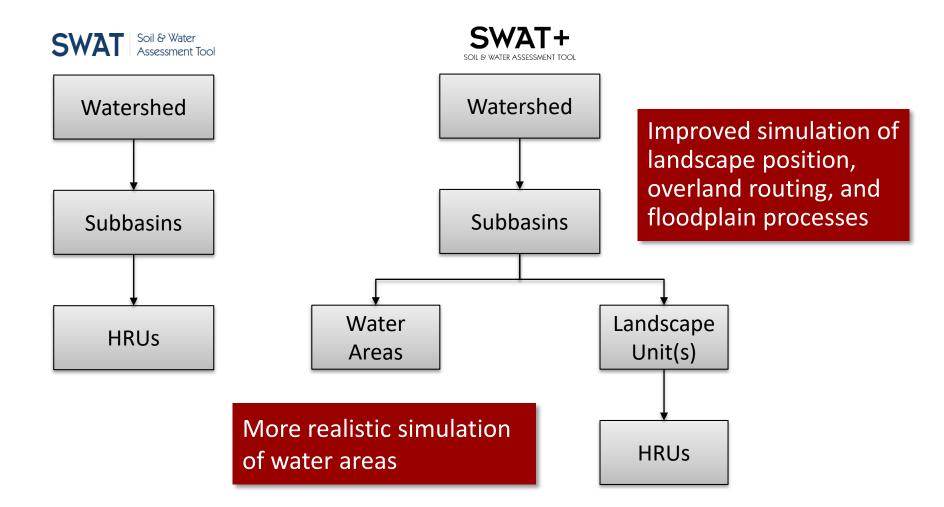
Connectivity for a National Agricultural Model Based on Transport Processes and Management

Jeff Arnold, Peter Allen, Mike White, Katrin Bieger, R. Srinivasan, Jimmy Williams Brussels SWAT Conference September 17-21, 2018

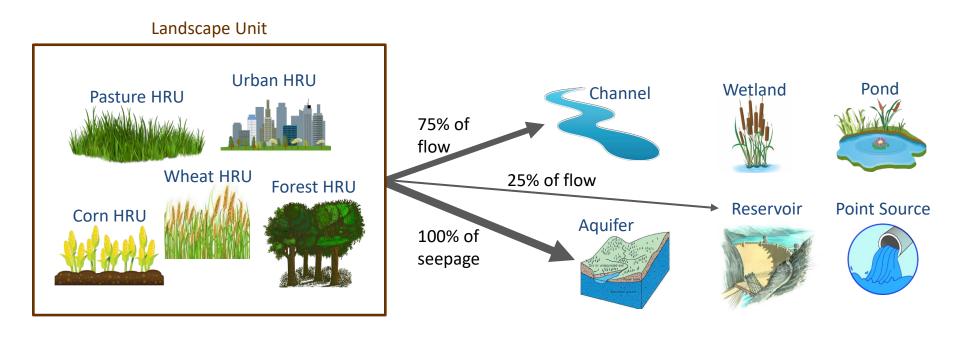
Introduction to SWAT+

New, completely restructured version (Bieger et al., 2017)

- MODULAR Extensive use of data structures and modules. Easier to maintain, link to other models, and add process subroutines.
- **RECODING** Spatial objects with new input/output data structure is complete. Continue recoding process subroutines and modules.
- VERSION CONTROL Bit Bucket
- FACILITATE maintenance of code and input files, linkage of SWAT and other models, addition of new process subroutines


SWAT+ input files

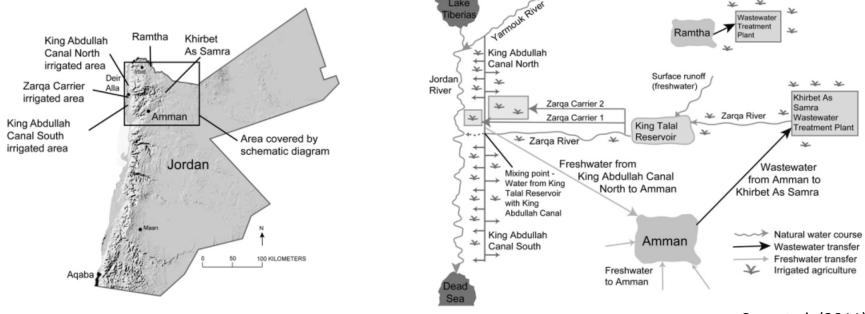
SWATSoil & Water Assessment Toolfc5 HRUs = 5 *.gw filesgrage5000 HRUs = 5000 *.gw filesgragehay_hay_	CV_OP_NAME prest_cut grain grass_bag ass_mulch	tree	HARV_INDEX 0.95 0	HARV_EFH 0.99 0.95	F HARV_BIO_MIN 0
5 HRUs = 5 *.gw files 5000 HRUs = 5000 *.gw files	grain grass_bag	grain	0		0
5 HRUs = 5 *.gw files 5000 HRUs = 5000 *.gw files	grass_bag	-	_	0 95	
5000 HRUs = 5000 *.gw files $grathar hay$		biomass		0.00	0
$5000 \text{ HRUS} = 5000^{\circ} \text{.gw IIIes}$	uss mulch		0.5	1	2000
U Hay_		biomass	0.5	0	2000
hay	_cut_high	biomass	0.8	1	3000
	_cut_low	biomass	0.8	1	1000
	orchard	biomass	0.01	1	0
	peanuts	peanuts	1.1	0.95	0
SWAT+	potatoes	tuber	1.1	0.95	0
SOIL & WATER ASSESSMENT TOOL	silage	biomass	0.9	0.95	0
	over_high	residue	0.9	1	1000
5 HRUs = 1 aquifer.aqu file	cover_los	residue	0.3	1	3000
strus – I aquilei.aqu ille	cover med	residue	0.6	1	2000
5000 HRUs = 1 aquifer.aqu file	egetables	biomass	0.5	1	2000
cott	con_strip	stripper	0.0	1	0
cott	on pick	picker	0.0	1	0


• Reduced number of input files

• Data files can be maintained as databases

Watershed configuration

Spatial objects and connections in SWAT+

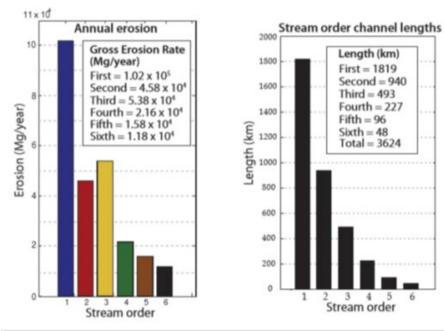


Flexible spatial representation of connectivity within a watershed using "connect" files

New spatial objects: pumps, canals, water rights, animal herds

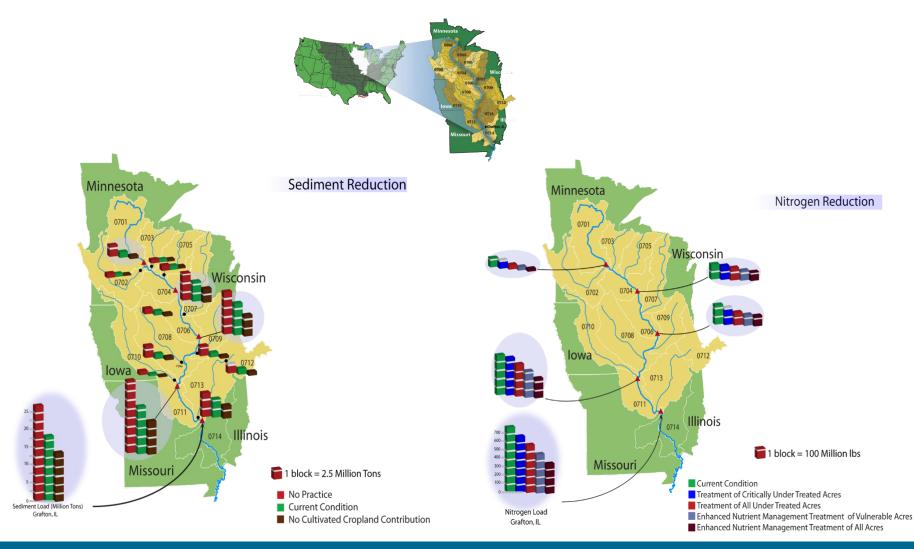
Natural and managed flow systems

Integration of natural stream network with water management systems (drainage, irrigation canals, water transfers, urban areas)


Carr et al. (2011)

Realistic simulation of water transfers and irrigation canals in a highly managed watershed like the Zarqa River Basin

9/19/2018


Motivation

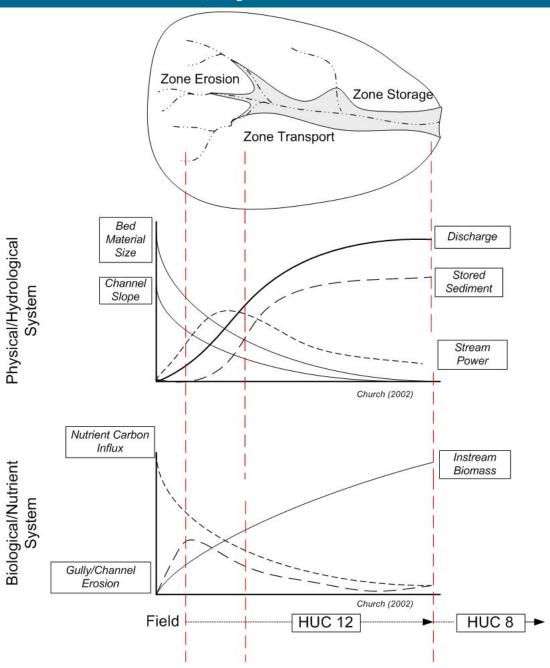
- Processes based watershed delineation
 - Delivery ratio and lumped MUSLE miss important processes and management
 - Simulate processes on lower order streams
- Importance of transport processes on lower order streams

Motivation

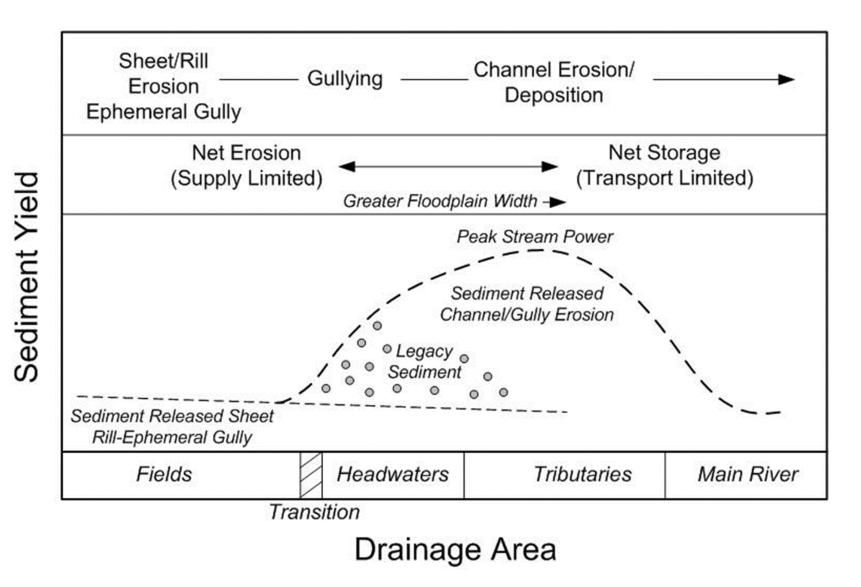
USDA CEAP – Final reports for all 2-digit river basins east of and including the Mississippi River Basin are on-line. USGS 8-digit huc's with delivery ratio

9/19/2018

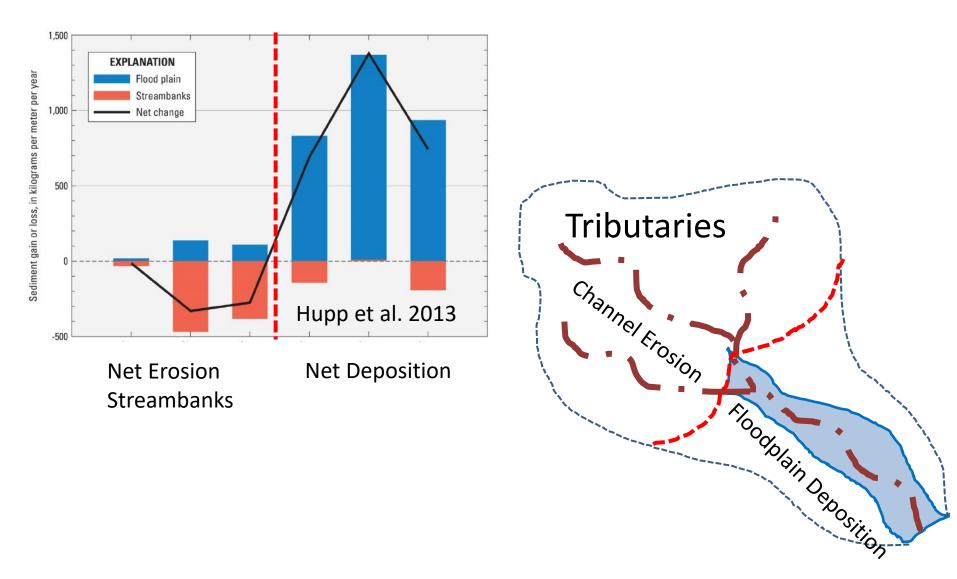
Motivation


HAWQS - Hydrologic and Water Quality System

 Web-based interactive water quantity and quality modeling system that employs SWAT as its core modeling engine


HAWQS	Hydrologic and Water Quality System A National Watershed and Water Quality Assessment Tool	man and the second second
E Projects v HUC 8 - 04050007 Create a new project	Welcome!	Anagos Mempis Asara Musuga Aulara ulenga
Account settings	≣ Projects	Louiser A Company
? Help	Name Last Modified + Res. Start HUC End HUC #Subs Area	
te tog off	HUC 8 - 04050007 = - Archive a project yr archived projects. x = Permanently delete This project was jointly SERA links Same under Same project was jointly archived projects. x = Permanently delete	Average Monthly Sediment Yield for 1/1/1963 to 12/31/1980
	→ SnowFall (mm) → Surf Q (mm) → Lat Q (mm) → Water Yield (mm)	Sediment Yield (T/HA)

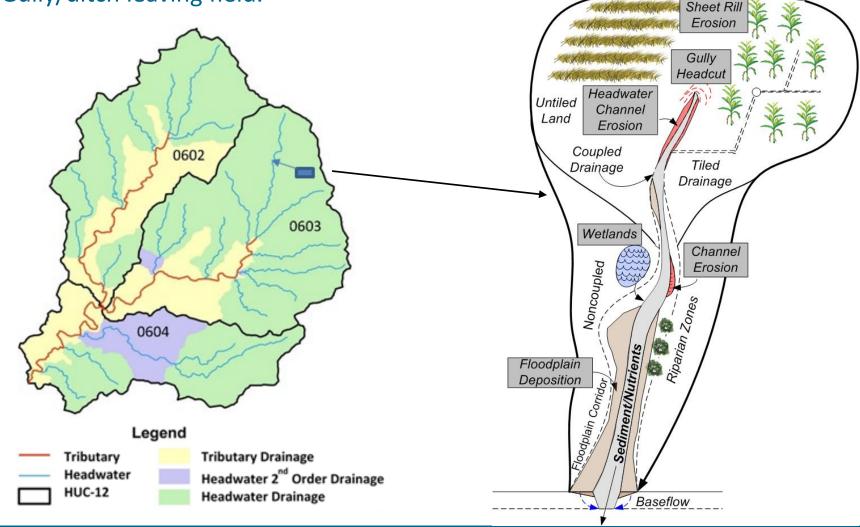
Process Domains


- Fields
 Transition
 Headwaters
 Tributary
- 5. Main River

Process Domains

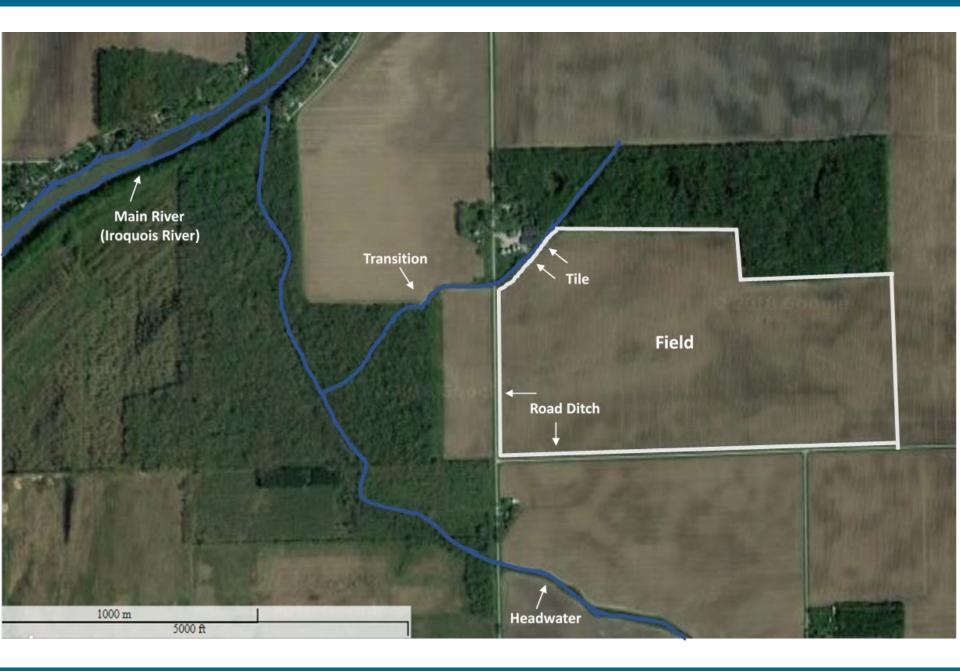
Process Domains

	Area	NHD Segment	Hydrologic Connectivity
Field	5-50 ha		Connected
Transition	0.2-2 km ²		Connected
Headwater	1-15 km ²	12-digit tributary	Connected
Tributaries	10-150 km ²	12-digit main channel	Partially Connected
Main River	>150 km ²	8-digit main channel	Unconnected

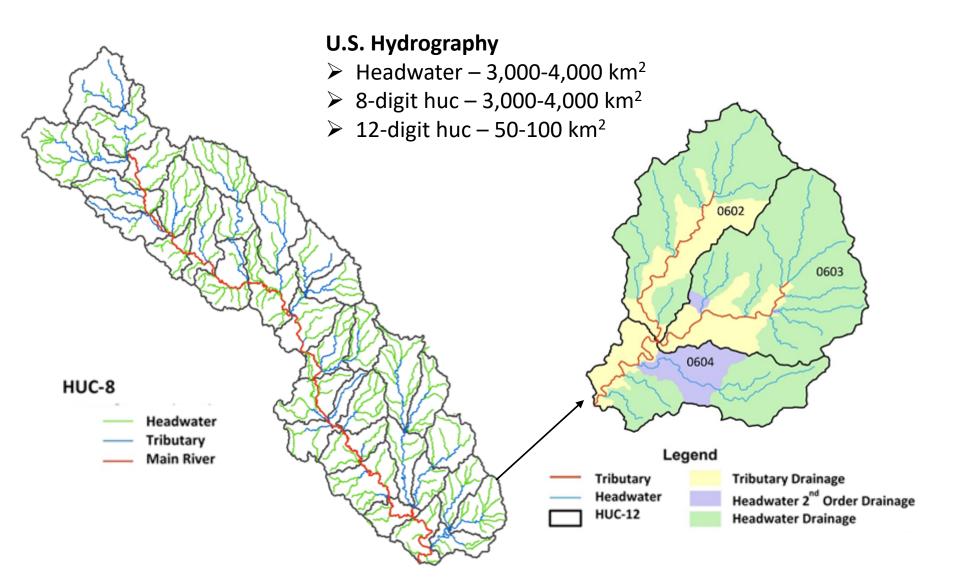

	Area	Model Domain	Processes Erosion
Field	5-50 ha	Hillslope	Sheet and Rill
		Soil	Emphemeral gully
		Plants	
Transition	0.2-2 km ²	Ditches	Headward
		Gullies	gully erosion
		Swales	
Headwater	1-15 km ²	Channel/Minor	Channel: aggradation/
		Floodplain	degradation widening
Tributaries	10-150 km ²	Channel and Floodplain	Channel Processes;
			Floodplain overbank
			deposition
Main River	>150 km ²	Channel and Floodplain	Channel Processes;
			Floodplain; overbank
			deposition

	Area	Processes Water	Sediment Model Approaches
Field	5-50 ha	Soil Water Budget	MUSLE
			WEPP Hillslope
Transition	0.2-2 km ²	Routing field runoff	Gully Model
Headwater	1-15 km ²	Continuous simulation	Excess Shear Model
		flow/seepage/soil flow	
		and baseflow	
Tributaries	10-150 km ²	Continuous simulation	Excess Shear; Bed
		flow/seepage and	material transport and
		baseflow	Overbank Deposition
Main River	>150 km ²	Continuous simulation	Excess Shear;
		flow/seepage and	Bed material transport
		baseflow	and Overbank Deposition

Area	Agricultural Management Practices
5-50 ha	Tillage; Irrigation;
	Fertilizer/Manure;
	Pesticides; Grass waterways;
	Terracing; Contouring;
	Drainage Water Management
0.2-2 km ²	Gully Restoration; Buffers;
	Saturated Buffers; 2-stage Ditches
1-15 km ²	Constructed Wetlands; Riparian Buffers;
	Legacy Sediment Removal;
	PL-566 Structures
10-150 km ²	Riparian buffers; PL-566 Structures;
	Irrigation Withdrawal
>150 km ²	Irrigation Withdrawal
	5-50 ha 0.2-2 km ² 1-15 km ² 10-150 km ²


Simulation of small-scale processes

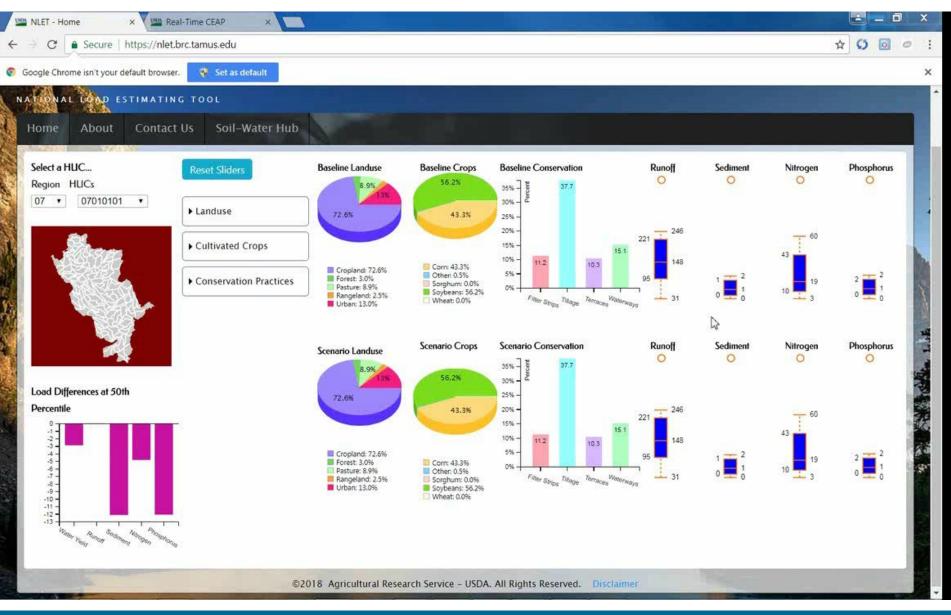
Simulate processes from edge-of-Field to Headwater.
 Gully/ditch leaving field.


Arnold et al.

9/19/2018

9/19/2018

Challenges


- Field map of U.S. derived from satellite data 4.2 million fields in U.S. - Average size 20-30 ha – Average 3,000 hru per 8-digit
- Representative transition channel
- NHD+ connectivity issues (National Hydrography Data)
- Rotation from satellite data assign regional management
- Mike has field data and is developing all hru files. Then all connections will be made.

Real-Time CEAP


NLET - Home	× Real-Time CEAP		2 - 0 ×
← → C ① real	timeceap.brc.tamus.edu		☆ 0 0 0 :
	CONSERVATION EFFECTS	ASSESSMENT PROGRAM	
	Field Condition		

9/19/2018

SWIFT

Thank You

Drainage Area

Sediment Yield

Decision tables

Precise, compact way to model complex rule sets and their corresponding actions

Current Uses in SWAT+

- Land management
- Reservoir release
- Land use change

- The structure of a decision table can be easily understood by model users
- Decision tables more accurately represent complex, real world decision making
- Decision tables can be easily maintained and supported

Auto Irrigation Example

Name	Conditions	Alternatives	Actions			
auto_irr	1	1	1			
VAR	OBJ	OB_NUM	LIM_VAR	LIM_OP	LIM_CONST	ALT1
w_stress	hru	0	null	-	0.8	<
ACT_TYP	NAME	OBJ	OB_NUM	TYPE	CONST	OUTCOME
irrigate	stress_0.8	hru	0	sprinkler	25.	y

Calibration

SWAT Soil & Water	SWAT+	•	Rapid model calibration
Assessment Tool	SOIL & WATER ASSESSMENT TOOL		Better tracking of
Changes of parameter values made in the original data file(s)	Changes of parameter values listed in calibration file that overrides original values	•	modified parameters Share calibration files with collaboration partners

<u>Va</u>	riable CN2	<u>Change_Type</u> ABS_VAL	<u>Change</u> -4	<u>HRUs</u> 1-2000	
Lar	nditions nd Use = ' G = 'A'				

Soft calibration

Hard Data

- > Long term, measured time series, typically at a point in the watershed
- Visual comparison of hydrographs, model evaluation statistics

Issues

- A model can show excellent statistical agreement with measured stream gauge data, while misrepresenting processes (water balance, nutrient balance, sediment source/sinks) within a field or watershed
- > This will cause errors when running management and climate scenarios

Soft Data

- Information on individual processes within a budget. May not be directly measured within a study area. May be an average annual estimate and entail considerable uncertainty
- Incorporation of soft data constraints into calibration routines
- Simple heuristic procedure has been included in SWAT+

