Performance Evaluation of SWAT with a Conceptual Rainfall-Runoff Model GR4J for a Catchment in Upper Godavari River Basin

Aatish Anshuman, Prof. Eldho T.I. and Dr. Aiswarya Kunnath-Poovakka

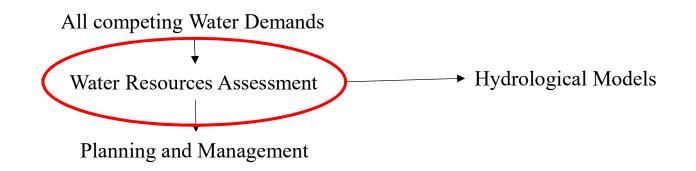
Civil Engineering Department

Indian Institute of Technology Bombay

Powai, India

SWAT -2018

• Introduction to Water Resources Management


- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion

Introduction

Water Resources Management

- ✓ Planning
- ✓ Developing
- ✓ Distributing
- \checkmark Managing the optimum use

Goal: Sharing in equitable basis amongst the stakeholders

Water Resources

- Model Complexity
 Data Requirement
 Structural Parameters

	Distributed/Semi	Conceptual Models	Black Box Models
	Distributed Models		
	Complex	Over Simplified Hydrological Cycle	Based on Input and Output
	TT' 1	5	
	High	Low	Low
	Dhuri aallu Dagad	Conceptually Based , Depends	Neither Physically
1	Physically Based	· •	Terther T hysicany
		Upon Model Structure	nor, Conceptually
			Based

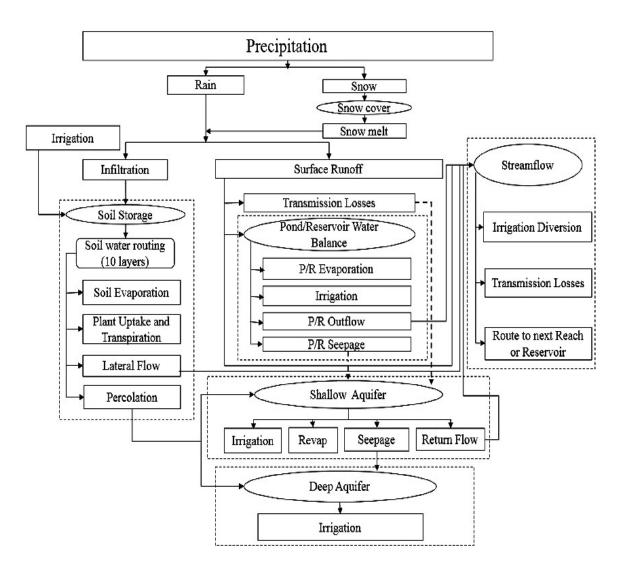
- Distributed models although most ideal, they are not suitable for data scarce areas.
- Conceptual models are gaining popularity due to their simple structure and less data requirement.
- These models have very few parameters which also helps in faster model setup and calibration.
- Conceptual models have been applied at various parts of world and proved to be very good water resources management tools. However studies in Indian catchments are scanty.

- Introduction to Water Resources Management
- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion

eWater's Source

- □ *eWater's Source*, *developed by CRC*, *Australia*, provides a modelling framework for conceptual models.
- □ The framework provides flexibility in **choosing models** , **objective function for calibration** and **calibration method**.
- □ The **GIS tools** in framework is helpful of delineating catchments and dividing them into many sub-catchments.
- Out of the 11 models provided in the Source's Modelling Platform, GR4J is selected as they are the *simplest* and have *wide application area*.

- Introduction to Water Resources Management
- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion

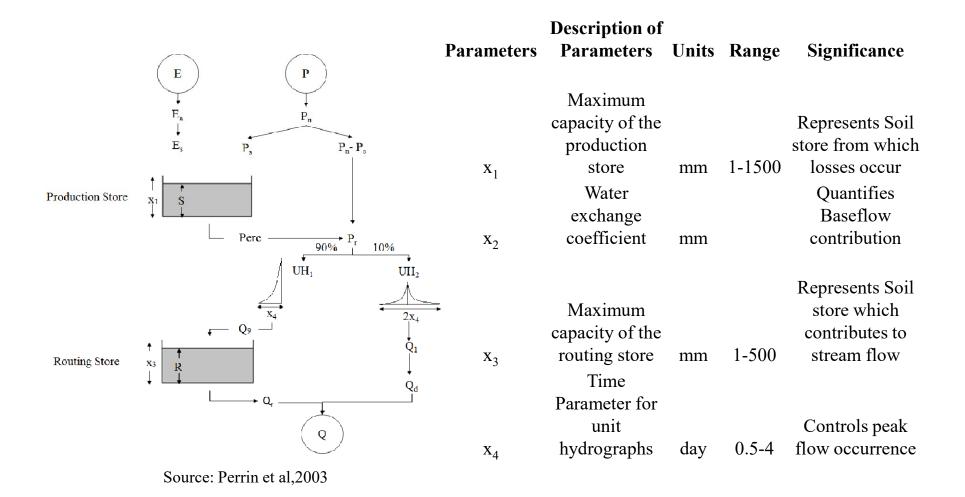

Study Objectives

- Calibration, validation and determination of parameters of the models.
- Comparison of rainfall runoff models **GR4J** and **SWAT** for a medium sized catchment in
 - Upper Godavari River Basin.
- Discussing the **limitations** and **scope** of the models.

- Introduction to Water Resources Management
- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion

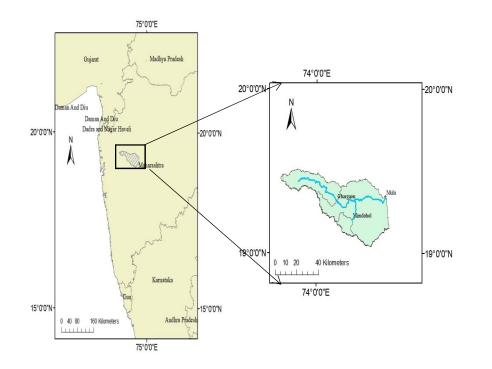
SWAT

- •Stands for Soil and Water Assessment Tool.
- •It is physically based, semi distributed model.
- •It works on daily time steps.
- •It divides the catchment into a number of Sub-basins and then into Hydrological response units with respect to Land use, Slope and Soil data.
- •Being a distributed model, the data requirement of this model consists of various meteorological and non-meteorological inputs.



Source: Neitsch et al. 2009

GR4J


- Stands for Ge'nie Rural a` 4 parame`tres Journalier.
- It belongs to the family of soil moisture accounting models.
- It is a **continuous lumped conceptual model** which operates in **daily step**.
- The parameters used in this model are independent and represent the components of conceptual hydrological model.
- Using Source platform a catchment can b e divided into many sub catchments manually which are also called functional units and parameters can be calibrated for each unit separately.
- The data used for this model are rainfall (P) and potential evapotranspiration
 (E).

GR4J - Model Structure

- Introduction to Water Resources Management
- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion

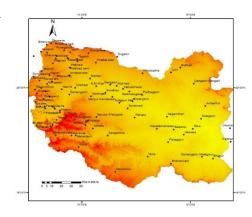
STUDY AREA

- Catchment Location: Ahmednagar district, Maharashtra
- It is delineated with respect to the Mula dam which is the 2nd largest dam after Paithan dam in Upper Godavari Region.
- Catchment Area: 2300 km²
- Primary land-use pattern are barren and agricultural lands.
- Soil type: Loam
- Water Resource Usage: Mainly for Irrigation and Drinking

Data Requirement for SWAT

DATA TYPE	SOURCE	SCALE/ PERIODS	DATA DESCRIPTION
DEM	SRTM digital elevation data produced by USGS	30m x 30m	Terrain properties.
SOIL	FAO (Food and Agricultural Organization)	1/5000000	Soil classification and physical properties
LAND USE	NRSC, ISRO Hyderabad	28m*28m /2004	Land use classification(19 classes)
CLIMATE	Indian Meteorological Department (IMD)	0.25 degree / 2000- 2011	Minimum and Maximum temperature, wind speed, relative humidity, solar radiation
DISCHARGE	WALMI,Aurangabad	2000-2011	Daily discharge data at selected station
PRECIPITATION	WALMI,Aurangabad	2000-2011	Daily Rainfall for 102 Rain-gauges in Upper Godavari River Basin

Data Requirement of GR4J

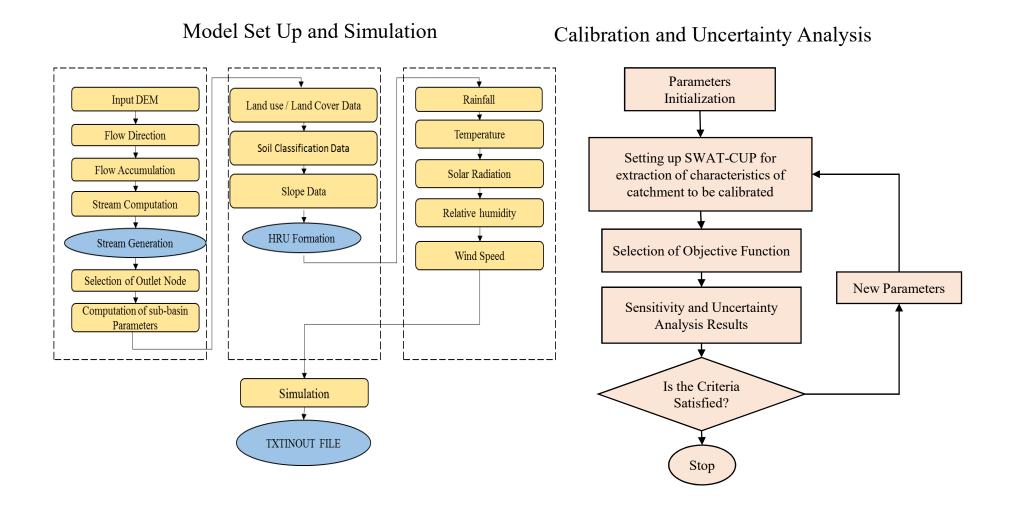

•Digital Elevation Model from USGS's Shuttle Radar Topography Mission is

used for delineation of the catchment area.

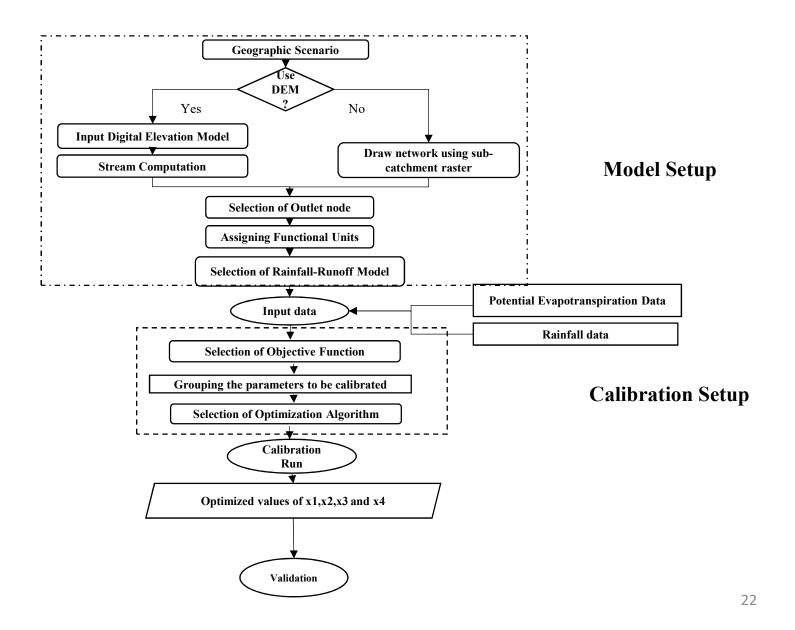
•The Meteorological inputs required are : Precipitation Data and Potential

Evapotranspiration Data

- PET data is collected from 2 stations Inside the Mula catchment.
- Representative precipitation for the catchment is calculated using Theissen
 Polygon Method for available rain gauges in
 Upper Godavari River
 Basin.

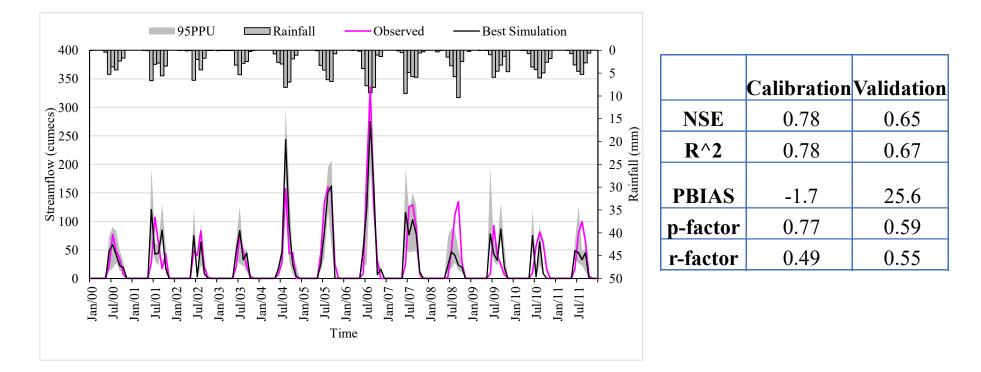


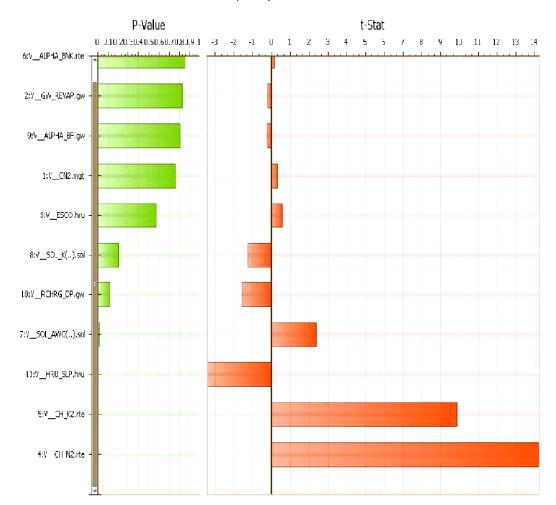
- Introduction to Water Resources Management
- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion


Calibration and Validation

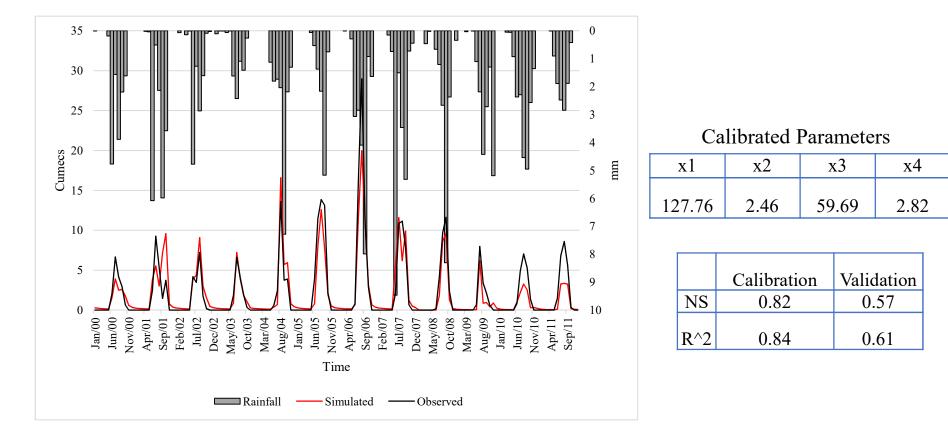
Models	GR4J	SWAT
Calibration Tool	Source's Calibration Wizard.	SWAT -CUP
Calibration Method	Shuffled Complex Evolution then Rosenbrock's Function	SUFI2
Objective Function:	NSE daily and bias penalty	NSE
Number of SCE Complexes	7	
Number of Parameters used for calibration	4	11
Number of Iterations	1000	1000 simulations Iterated 4 Times
Performance Evaluation Parameters for Calibration	•NSE •R^2	•NSE •R^2 •PBIAS •P-factor •R-factor
Calibration Period	2000-2007	2000-2007
Validation Period	2008-2011	2008-2011
Scale	Monthly	Monthly

SWAT




GR4J

- Introduction to Water Resources Management
- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion


SWAT Model Results

Sensitivity Analysis for Mula catchment

Parameter_Name	Fitted_Value	
V_CN2.mgt	34.54417	
VGW_REVAP.gw	0.073399	
V_ESCO.hru	0.871966	
V_CH_N2.rte	0.045024	
V_CH_K2.rte	64.824745	
V_ALPHA_BNK.rte	0.103641	
V_SOL_AWC().sol	0.93245	
V_SOL_K().sol	1166.42627	
VALPHA_BF.gw	0.044351	
VRCHRG_DP.gw	0.566686	
V_HRU_SLP.hru	0.177506	
VREVAPMN.gw	189.188705	

GR4J Model Results

Comparison

	GR4J	SWAT
Туре	Conceptual model	Semi-Distributed model
Parameters	4	More than 20 parameters to calibrate using streamflow
Structure	Simple structure	Complex structure
Data Requirement	Requires only two input variables, PET and Rainfall	Requires meteorological properties such as wind speed, relative humidity, Temperature, etc. and physical watershed properties such as LULC, soil along with rainfall as input.
Time requirement	Low	High
Suitability	Suitable for data scarce regions	Not suitable for data scarce regions
Calibration	Deterministic calibration	Stochastic calibration
Output	Streamflow	It can generate other hydrologic processes along with stream flow
Catchment characteristics	Does not consider physical properties of the watershed for modeling	Considers physical properties of the watershed for modeling e.g., LULC, Soil
Scale of catchment Provides best results in small catchments		Provides best results in small as well as large catchments

- Introduction to Water Resources Management
- Brief Overview of eWater's Source
- Study Objectives
- Overview of Models Used
- Study Area and Datasets
- Methodology
- Results and Discussion
- Conclusion

Conclusions

- GR4J has 4 independent parameters, SWAT has many interdependent physically based parameters.
- The parameters of GR4J give a vague idea about catchment characteristics , where as that of SWAT being physically based helps us understand various hydrological processes in the catchment concerned.
- The calibration process for GR4J is faster than SWAT due to it lower complexity.
- The **performance** of both **GR4J and SWAT** are similar in terms of NSE and R^2.
- Conceptual models such as GR4J can be used as effective water resource modelling tools in data scarce areas for short term analysis and prediction.
- Due to unreliability of parameters, GR4J can't be used for long term prediction and analysis. In such cases, distributed model such as SWAT can be used.

ACKNOWLEDGEMENT

We are thankful to Water And Land Management Institute (WALMI), Aurangabad and eWater, Australia for providing necessary data for this study.

CITED REFERENCES

•Boughton, W., (2004). The Australian water balance model. Environmental Modelling & amp; Software, 19(10),

943-956.

•eWater(2013),Source User Guide (v3.5.0)[Online]

(https://eWater.atlassian.net/wiki/display/SD37/Source+User+Guide)

•Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water

assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

•Perrin, C., Michel, C., & Andréassian, V., (2003). Improvement of a parsimonious model for stream flow simulation. Journal of Hydrology, 279(1–4), 275–289.

•USGS (2004), Shuttle Radar Topography Mission, 1 Arc Second scene SRTM_u03_n008e004, Unfilled Unfinished 2.0, Global Land Cover Facility, University of Maryland, College Park, Maryland, February 2000.
•WALMI (2017) report, Upper Godavari Catchment Calibration Model

Any Questions /Suggestions?

Thank You