HYDROLOGICAL ASSESSMENT OF GRIDHAMAL BASIN AND SENSITIVITY ANALYSIS USING SWAT

By V Kumar

Madurai

PROBLEM FORMULATION

- Urban water usage/management and Food production has to be addressed in the perspective of sustainable approach but there is a lagging of this approach in our present scenario.
- □ WATER CRISES at GRIDHAMAL Basin.
- No Irrigation (crop production) & Groundwater depletion
- Increasing of urban water stress and Inefficient usage of treated wastewater.

Tamil Nadu Worst North East Monsoons in 150				
years				
Years	October 1st - December 31st Rainfall in mm			
1876	163.5			
2016	168.4			
1892	186.2			
1938	194.5			
1897	197.2			
1878	220.6			
1904	229.9			
1974	233.4			
1988	234.6			
1949	235.4			
1909	239.1			
1947	239.1			
1995	260.0			
1950	275.9			
1889	277.6			
1927	287.5			
1986	289.2			
1886	293.0			
1952	302.6			
1879	303.3			

AIM: To establish the treated wastewater as an reliable source for Crop production, Groundwater Recharge.

OBJECTIVES : ≻To study the treated wastewater along with surface runoff respect to different crops

≻To establish a model that would generate framework in different scenario using SWAT.

≻To generate the output as CROP GROWTH, GW Recharge, SOCIO-ECONOMIC Benefits.

SWAT (Soil and Water Assessment Tool)

- A Semi-Distributed hydrological model with world wide acceptance for watershed projects.
- SWAT is developed to predict the impact of land management practices on hydrologic components, crop growth, sediment load and water quality including Total nitrogen (TN) in large complex watersheds over long periods of time.

STUDY AREA

METHODOLOGY

WATERSHED DELINATION and HRU COMPLETION

🥰 QGIS 2.6.1-Brighton - 20MLD	
Project Edit View Layer Settings Plugins Vector Raster Datab	Itabase Web Processing Help
🗋 🗁 🖶 🛃 🕞 🐼 🧄 🕐 🖉	, 위 🧏 🎾 🔎 🔒 🎧 🔁 🔍 🍭 - 🔣 - 🥫 🖺 🗮 🗮 - 🖓 📫 🚺 🖉
Results	
Image: Watershed Imag	55 9 95 9 J
Po Inlet Reservoir	
Point source Selected inlets/outlets (drawo	16 61 1928 905 10 1 46
	200 200 200 at
Point source	
Cutlet	
Reservoir Point source	59 × 57
X — Reaches (riv1) X — Streams (gridhamal_utm43net)	76 39 50 1
Watershed (subs1) Image: Subbasins (gridhamal_utm43w	41
Vorter Hillshade (gridhamal_utm43hs)	
14 - 130	
246 - 363	
	Scale 1:252,315 ▼ ■ Render EPSG:32643 @ A
C Ask me anything	[] 🕒 🗎 🗮 😻 🌖 🔤 🏧 🜆 🔤 🚾 🔯

THIESSION POLYGON

Variations in Precipitation

Variations in Ground water Recharge

Results

🔼 🗖

Q

🔇 🗸 🛛

1

🛱 🔚 🐯 🥥

[]]

6:40 PM

3/13/2017

22

(👍 へ 🐑 🕼 ENG

2nd Scenario

Characteristics of Treated wastewater

S.No	PARAMETER	CONCENTRATION	UNITS	STANDARD LEVEL
		(ACTUAL)		
1	BOD	8	mg/l	< 30
2	COD	24	mg/l	< 250
3	TSS	6	mg/l	50-100
4	РН	7.3		6.5 - 8.4
5	OIL & GREASE	0.7	mg/l	< 10
6	POTASSIUM	31	mg/l	5 to 20
7	SODIUM	391	mg/l	115-230mg/lforSensitive crops.230-460mg/lTolerantcrops.
8	PHOSPHORUS	1.24	mg/l	0.1 to 0.4
9	NITROGEN	7.85	mg/l	>10

PERCOLATION Changes Comparison of 22 Sub-basins

Prediction of 6 Sub-basins Percolation with 20 MLD Flow

PREDICTED PERCOLATION

•Area of 1st 6 sub-basins was 1622 ha.

•Average recharge would be 404.2 mm

Prediction of 12 Sub-basins Percolation with 60 MLD Flow

Prediction of 22 Sub-basins Percolation with 100 MLD Flow

•Average recharge would be 373.6 mm

CROP GROWTH

Management File – Schedule

Add Year	Current Management Operation	ns		
	Year Month D	Day Operation	Crop 🔺	
Delete Year		1 Plant/begin. growing se	CORN	
		20 Auto fertilization initializ		N You
	1 1 2	25 Auto irrigation initializati		66
Add Operation	1 5 1	0 Harvest and kill operati		and the second and
	1 5 3/	0 Tillage operation		No ta y see
1.000	1 6 1	5 Plant/begin. growing se	RICE	LI CTT LITERA
Delete Operation	1 6 2	25 Auto fertilization initializ	Load Sch	shedule 5118
	1 7 5	Auto irrigation initializati		
Edit On anti-	1 11 1	E Hanvest and kill operati	1999	520(20) 487
Operation Parameters — C Schedule by Date C Schedule By Heat Ur	OP NUM	otation : 1	Save Sch	chedule
Concoperation	OP NUM	otation : 1	Save Sch	chedule
Colt Operation Operation Parameters C Schedule by Date C Schedule By Heat Ur Edit Values Etit Values	OP NUM its Pear of Re d Parameter Edits	otation : 1	Save Sch	chedule
Edit Values	OP NUM Year of R OP NUM Year of R d Parameter Edits tend ALL MGT General Parameter tend Management Operations	otation : 1 Selected HRUs Subbasins Land Use	Save Scl	chedule
Edit Values	OP NUM Year of R Year of R d Parameter Edits tend ALL MGT General Parameter tend Management Operations	otation : 1 Selected HRUs Subbasins Land Use	Soils	chedule
Edit Values	OP NUM Year of Re Year of Re ALL MGT General Parameter tend ALL MGT General Parameter tend Management Operations tend Edits to Current HRU	otation : 1 Selected HRUs Subbasins Land Use	Soils Slope	chedule
Edit Values Edit Values Edit Values Edit Values Cancel Edits Save Edits	OP NUM Year of Ro OP NUM Year of Ro OP NUM Year of Ro OP NUM tend ALL MGT General Parameter tend Management Operations tend Edits to Current HRU tend Edits to All HRUS	otation : 1 Selected HRUs Subbasins Land Use	Soils Slope	chedule
Edit Values	OP NUM Year of Re Year of Re ALL MGT General Parameter tend ALL MGT General Parameter tend Edits to Current HRU tend Edits to All HRUS tend Edits to Selected HRUS	otation : 1 Selected HRUs Subbasins Land Use	Soils	chedule

Comparison of Simulated yield with average by TNAU

Crop_Growth						
SLNo	Crop Name	Model Simulated Yield Kg/Hec	Avg. Range by TNAU	Average Yield by TNAU	Deviation	Suitability
1	Rice	3200	3000-3500	3200	0	Highly Suitable (A)
2	Com	4900	4000-5000	4800	-2.083	Highly Suitable (A)
3	Cucumber	6200	6000-8000	7000	11.42	Highly Suitable (A)
4	Peanut	1600	1800-2200	2000	20	Highly Suitable (A)
5	Sunflower	1000	1100-1400	1200	16.67	Highly Suitable
6	Sugarcane	110	100-120	110	0	Highly Suitable (A)
7	Sourgham	1800	1600-1900	1800	0	Highly Suitable (A)
8	Coconut	9500	12000-15000	13500	29.6	Suitable
9	Oil Palm	500	300-400	350	-42.8	Suitable
10	Castor Oil	180	200-300	250	28	Suitable
11	Sovabean	550	600-900	700	21.42	Suitable
12	Spinach	5100	6000-8000	7000	27.2	Suitable (A)
13	Cotton	400	500-700	600	33.33	Suitable
14	Indian Grass	\$100	10000-16000	13500	40	Suitable
15	Banana	6000	35000-40000	36000	83.3	Not Suitable
16	Papaya	3600	30000-36000	32000	88.75	Not Suitable
17	Cabbage	1000	45000-55000	55000	98.18	Not Suitable
18	Orange	600	1600-2100	1800	66.67	Not Suitable
19	Pine Apple	5000	30000-36000	32000	84.3	Not Suitable
20	Potato	3000	12000-16000	14000	78.5	Not Suitable
21	Tomato	1600	11500-14000	12500	87.2	Not Suitable
22	Sweet Potato	500	11000-15000	12000	95.83	Not Suitable
23	Tobacco	100	300-500	350	71.42	Not Suitable
24	Onion	3200	7000-8000	7200	55.55	Not Suitable
25	Water Melon	4400	25000-30000	27000	83.7	Not Suitable
26	Green Beans	2600	8000-10000	8700	70.1	Not Suitable

A - Crops having this mark are already an usual crop in our study area

NUTRIENT CHANGES

% change in ORG P

% change in ORG N

Calibration

ET_10

•

Sensitivity Analysis

New set of values

Par_No	Par_Name	Rank	t-Stat	p-value	Description
1	CN2.mgt	11	-9.3825295	0.0000000	curve number
2	ESCO.hru	1	26.9988940	0.0000000	Soil evaporation compensation factor
3	SOL_AWC().sol	3	2.5714094	0.0107371	Available water capacity of soil layer
4	ALPHA_BF.gw	10	-1.9755991	0.0493554	Baseflow factor
5	GW_DELAY.gw	9	-1.4008556	0.1625597	Groundwater delay
6	GWQMN.gw	7	-0.4943307	0.6215285	Treshold water in shallow a quifer required for return flow to occur (mm)
					to occur (mm)
7	GW_REVAP.gw	6	0.1646679	0.8693451	GW "revap" coefficient
8	EPCO.hru	5	1.2904292	0.1981538	Plant uptake compensation factor
9	SOL_K().sol	4	1.7003348	0.0903742	Saturated hydraulic conductivity.
10	SOL_BD().sol	2	3.0291082	0.0027232	Moist bulk density
11	REVAPMN.gw	8	-1.397088	0.1636881	Threshold water in shallow a quifer for "revap" to occur (mm)

par_no	par_name	new_min	new_max
1	r CN2.mgt	-0.240519	0.053319
2	v ESCO hru	0.876490	1.029910
3	r SOL AWC().sol	-0.253785	-0.017815
4	v ALPHA BF.gw	0.482727	1.449273
5	v GW DELAY gw	147.06333	24 381.656647
6	a GWQMN.gw	-5.831972	14.731972
7	a GW REVAP.gw	-0.087327	-0.029073
8	v EPCO.hru	0.886143	1.058657
9	r SOL K().sol	-0.200442	1.000442
10	r SOL BD().sol	-1.040403	0.053602
11	vREVAPMN.gw	0.252721	0.759279

Validation

ET_10

Summary

- Model is first simulated with Scenario 1 and for this calibration and validation was done with ET values
- □ Then the corrected model was used for future predictions.
- Outputs are focused on CROP GROWTH, GW RECHARGE, SOIL NUTRIENT CHANGES and ECONOMICAL ASPECTS.

Conclusion and Recommendations

- □ The results of Calibration and Validation for ET value with objective functions of **R**² and **NS** were 0.86 & 0.72 and 0.85 & 0.61
- □ As an average of more than 300 mm will be percolated every year in these 22 sub-basins. These sub-basins has an area of 6500 hectares and approximately 19.5 Mm³ of water will gets percolated.
- □ If we properly utilize the treated wastewater as per this study, the Peri Urban will get lot of benefits in the form of CROP PRODUCTION, GW RECHARGE.

