

Uncertainty in the SWAT Model Simulations due to Different Spatial Resolution of Gridded Precipitation Data

Vamsi Krishna Vema¹, Jobin Thomas², Jayaprathiga Mahalingam¹, P. Athira⁴, Cicily Kurian¹, K.P. Sudheer³

Research Scholar (IIT Madras)
Senior Project Officer (IIT Madras)
³ Professor (IIT Madras)

⁴ Assistant Professor (IIT Palakkad)

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

2

Introduction

- Watershed scale hydrological models – important tools for impact evaluation
- Applications include: Watershed management, irrigation planning, flood forecasting, etc.
- Constraint -Uncertainty

Significance of Precipitation Data

Gauge Data	Gridded Data
Meteorological Station	Computed: Satellite Data Derived: Gauge and Satellite Data
Point measurement	Spatial measurement
Poor spatial coverage	Good spatial coverage
Long records (maximum 350 years)	Short records (maximum 25 years)
Observer errors, instrumental errors, errors due to environmental influences	Instrument calibration, changing algorithms

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

Process Representation in SWAT

SWAT uses data from one precipitation gauging station that is nearest to the centroid of each sub-basin

Hydrologic Modeling Group

Basin centroid

Gridded data poin

Objective

• To assess the variability in the model output with respect to precipitation data of different spatial resolutions and watershed size

Hydrologic Modeling Group

Model Setup

Data	Resolution	Source
Digital Elevation Map	90 m	Shuttle Radar Topography Mission (SRTM)
Land use Map	500 m	WATERBASE
Soil Map	1000 m	Harmonized World Soil Database (HWSD)
Weather Data	1° x 1° 0.5° x 0.5° 0.25° x 0.25°	India Meteorological Department (IMD)

Hydrologic Modeling Group

7

Scenarios

- Watershed Discretization
 - □ 19 sub-watersheds (CI Threshold = 7000 km^2)
 - □ 77 sub-watersheds (2000 km²)
 - □ 129 sub-watersheds (1000 km²)

Precipitation Input

Data Set	Spatial Resolution (Lat x Long)	Data Period
IMD	1° x 1°	1971-2005
IMD	$0.5^{\circ} \ge 0.5^{\circ}$	1971-2005
IMD	$0.25^{\circ} \ge 0.25^{\circ}$	1971-2005

Hydrologic Modeling Group

Precipitation – 19 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Precipitation – 77 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Precipitation – 129 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Evapotranspiration – 77 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Evapotranspiration – 129 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

HMG-IITM Surface Runoff – 19 Sub-basins 10 **0.5**° **0.25**° 24 b) a) C) 501 - 1000 151 - 250 251 - 500 1001 - 2000 > 2000 Surface Runoff, Mean (mm) <= 150 d) e) f) 300 150km 51 - 75 76 - 100 101 - 150 151 - 200 > 200 <= 50 Surface Runoff, CV (%) Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

Surface Runoff – 77 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Surface Runoff – 129 Sub-basins

Department of Civil Engineering, Indian Institute of Technology Madras

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Sediment Yield – 77 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

Sediment Yield – 129 Sub-basins

Hydrologic Modeling Group

Department of Civil Engineering, Indian Institute of Technology Madras

19 January 2018

HMG-IITM

Department of Civil Engineering, Indian Institute of Technology Madras

HMG-IITM

PBIAS (with respect to flow from 1°)

No. of Sub- basins/Degree	0.5 °	0.25 °
19	6.07	14.97
77	-0.22	24.39
129	7.93	28.07

Hydrologic Modeling Group

Conclusions

- Uncertainty in input data needs to be considered for efficient water resources planning and management
- The uncertainty in representation of spatial variability of rainfall data is significant
- The forcing data selection needs to be done carefully

