Session H2: Hydrology

Management of Storm Water Flooding in Metropolitan Cities of India

Ramji Satyaji Rao Yellamelli*1, Venkata Ramana Ramba², Jayakanthan VSivalingam³

- 1. Scientist, National Institute of Hydrology, Deltaic Regional Centre, Sidhartha Nagar, Kakinada A.P. Email: yrsrao.nihr@gov.in (corresponding author)
- 2. Scientist, National Institute of Hydrology, Deltaic Regional Centre, Sidhartha Nagar, Kakinada A.P.
- 3. Scientist, National Institute of Hydrology, Deltaic Regional Centre, Sidhartha Nagar, Kakinada A.P.

Presented by Dr. Y.R. Satyaji Rao Deltaic Regional Centre National Institute of Hydrology Kakinada, A.P., yrsrao.nihr@gov.in

Global Potential Risk of Urban Flooding

Multiple & uncertain drivers of future change

- ✓ Extreme rainfall events
- ✓ Nutrient and pollutant loading
- ✓ Urbanisation effects
- ✓ Land use change
- ✓ Socio-economic trends

Transient shocks vs. Chronic stresses

Storm Water Runoff in urban areas

- >No measurements on storm water Quantity and Quality
- Indirect estimation of quantity from Hydraulic structures or storm water drains
- >No information on flood prone area (Depth, Duration and Area)

No information on high resolution topography
Mixing up of storm water, waste water and sewage water
Natural filling up of water bodies, temple tanks, reservoirs

 Limited information on artificial groundwater recharge
No information on storm water reuse/conservation
No forecast on urban floods for Transport authorities/ Infrastructure developers/ Govt., and public sectors/other sectors

Fig.2Floods Frequency from 1900 to 2014 (Source EM-DAT International Disaster Database)

Highest Daily Rainfall events (Observed)

Mumbai: 94.42 cm/day (26.07.2005) 36.62 cm/day (08.08.1997) 29.76 cm/day (30.08.2017) Chennai:33.78 cm/day (30.11.2015) 14.40 cm/day (Aug 2005)

Hyderabad:24.16 cm/day (24.08.2000) 16.71 cm/day (21.09.2016)

Bangalore: 16.6 cm/day (year 1890) 18.4 cm/day (14.8.2017)

Amaravati: 20 cm/day (16.10.1969) 15 cm/day (01.11.1994) 13.76 cm/day (21.9.1997)

Methodology

Why Storm Water Flood Modeling ?

- To design effective storm water drains to avoid flooding or to identify flood prone areas in new urban areas
- To understand system inflow and outflow characteristics in new and existing urban areas
- To understand storm water network efficiencies in existing urban areas.
- To propose or incorporate various flood mitigation measures in existing urban areas

Developing city: Hyderabad

Upcoming city (Capital of A.P): Amaravathi

Fully Developed urban city: Chennai

Objectives	Findings
Adequacy verification of existing storm water drainage network.	Existing storm water drainage work has been analysed using GIS & SWMM. Model results was calibrated with observed data and simulated with 2 & 5 year design storm. existing storm water drainage network of study basin not adequate even 2 year design storm.
To develop the outfall hydrograph and water surface profiles along the drains.	Model simulated with 2 & 5 year design storm and develop the outfall hydrographs and water surface profile along the drains to find-out flooding locations along drains.
Design of the alternative drainage net-work.	Existing storm water drainage work has been modified with hydraulic parameters (depth & width) and proposed the new drainage to taken care of the flood mitigation measures up-to 5 year design storm.

Amaravathi (on going)

- Proposed capital city boundary area 217 km²
- Area bounded with high contours/ridges
- HFL of Krishna river (RL 21.5 m) higher than KV (RL 17.5m) level
- Presently entire KV flood discharges through Undavalli outlet, u/s of Prakasam Barrage
- Gravity drainage impossible in the above scenario!!!
- > With topographical-hydraulic constraints pumping is required

Case Study: Chennai

Fig. 7. Runoff hydrograph before and after urbanization for the return period of 100 years.

Land use changes.

SI. no.	Land use	Area in sq	% Change	
		1976	2005	
1	Agricultural land	71.79	44.03	-39
2	Barren land	65,46	83,50	+28
3	Built-up area	70.30	107.64	+53
4	Canal	0.15	0.07	+53
5	Forest	9.73	10.62	+9
6	Plantation	11.38	4.12	-64
7	River	3.99	3,41	-15
8	Scrub land	32,26	17.69	+45
9	Tanks	34,69	28.67	-17
C334	Total	299.75	299.75	Journ

ournal of Hydrology 412-413 (2012) 210-219

<u>Urban flooding</u>

□It is triggered when surface runoff exceeds the capacity of drainage systems, which happens when heavy rainfall pours on sewers with the limited capacity, or even medium rainfall falls on poorly planned or operated drainage systems (Kamal and Rabbi, 1998; Arambepola, 2002).

Definition of Urban Drainage Systems

□Urban drainage systems are defined as physical facilities that collect, store, convey, and treat runoff in urban areas. These facilities normally include detention and retention facilities, streets, storm sewers, inlets, open channels, and special structures such as inlets, manholes, and energy dissipaters" (ASCE and WEF, 1992).

Popular Storm Water Model Software Packages

• US EPA (SWMM)

• **DHI** (MIKE URBAN)

Bentley (Storm net)
BENTLEY haestad

Solutions by Bentley

• Wallingford

• <u>XPSWMM</u>

Vallingford Software

XP Software Inc.

SELECTED MODEL

XP SWMM/EPA SWMM

(Stormwater and Wastewater Management Model)

XPSWMM used to develop link-node and spatially distributed models that are used for the analysis, design and simulation of storm and waste water system. It also models flow and pollutant in natural system including rivers, lakes, and floodplains with groundwater interaction.

What is SWMM?

SWMM is a distributed dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas.

Process of Storm to Sewer network

Design of Storm sewer system

Design storms are routinely used for designing storm sewer system.

A design storm is a hypothetical storm with specific duration *D* and return period *T*.

The information of design storms is conveniently presented in the form of depth-duration-frequency (DDF) curves or intensity-duration-frequency (IDF) curves.

Modeling of Storm Sewer System

Project Objectives:

- 1. Evaluation of existing storm water drainage network efficiency in the study area
- 2. To find out the inflow-outflow hydrograph at various outlets and the water surface profile along the storm water drains.
- 3. Feasibility of improvement of the existing storm water drainage network or to propose additional network to mitigate urban storm water flooding in the study area.
- 4. Dissemination of results of the project through workshops/ brain storming sessions/awareness programs with the help of NGO's/Govt., departments/Academic Institutions in the study area and elsewhere.

Instrumentation in Project Location: Monitoring Network of Rain gauge

Application of Model (XP-SWMM)

Schematization of Project Area: Micro watersheds(86), Node (121) and Links (120)

Delineated micro watersheds of the study area in XP-SWMM

Details of links considered in the XP-SWMM

Comparison between observed and modeled stage at Anna Nagar (25th Oct. 2011)

Comparison between observed and modeled stage at Anna Nagar (4th Nov. 2011)

<u>-- п</u> -- О

20

40

60

80

100

Observed

Rainfall (mm)

Π

21

16

Comparison between observed and simulated stage at Anna Nagar (25-10-2011, 9.00 to 27-10-2011, 12.00 hrs)

Comparison between observed and simulated stage at Basin Bridge (25-10-2011, 9.00 to 27-10-2011, 12.00 hrs)

Correlation between observed and simulated stage at Basin Bridge

24 hr Design Storms for various Return Periods

Details of water balance, flood peaks with existing and proposed longitudinal profile of Otteri Nullah against various return period of design storm

24 hr design	Peak (m ³ /s)		Syst Inflov	tem v (m ³)	System Outflow (m ³)		± % Error	
storm return period	Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed
2	27.57	53.00	2.7463*10 ⁶	2.7463*106	2.7429*106	2.7538*106	0.065	-0.323
5	33.80	61.40	4.6879*10 ⁶	4.6879*106	4.6817*106	4.6931*106	0.065	-0.110
10	37.58	69.31	5.9395*10 ⁶	5.9395*106	5.9345*106	5.9411*106	0.031	-0.050
25	42.37	75.60	7.6090*10 ⁶	7.6091*106	7.6056*106	7.6092*106	0.005	-0.001

24hr design hyetographs and its corresponding hydrographs at sub basin outfall with existing longitudinal Profile

Flood Mitigation Measures

24hr design hyetographs and its corresponding hydrographs at sub basin outfall with proposed longitudinal profile.

Water surface profile in the OND with 2-yr return period 24 - hrs design storm with/with out boundary conditions

Water Surface Profile

Plan View

Water Surface Profile

Plan View

Impact of Flood Mitigation Measures at Node Points

Total SWD Nodes (92)			Total OND Nodes (29)		
24-hrs storm Return period	FN Existing L/P	FN Proposed L/P	24-hrs storm Return period	FN Existing L/P	FN Proposed L/P
2 Yr	64	54	2 Yr	5	1
5 Yr	68	58	5 Yr	6	4
25 Yr	71	61	25 Yr	6	4
100 Yr	71	71	100 Yr	6	6

Location of proposed diversion channel by PWD in the study area

Two years return period of hyetograph and corresponding hydrograph at Anna Nagar with and without diversion channel

Existing Stormwater drainage conditions in the study area

Objectives	Conclusions
Evaluation of existing storm water drainage network efficiency in the study area	The present storm drainage network is not sufficient even for two year return period rainfall except ON drain.
To find out the inflow-outflow hydrograph at various outlets and the water surface profile along the storm water drains.	Inflow/out flow Hydrographs and water surface profiles were developed at all nodes in the project area after testing of the XP-SWMM model. Flood hydrographs have been developed at basin out let with tide and without tide for 2,5, 10 and 25 years return period rainfall.
Feasibility of improvement of the existing storm water drainage network or to propose additional network to mitigate urban storm water flooding in the study area.	Proposed change in longitudinal profile of ON Drain is capable to drain five year return period rainfall. Proposed diversion of flood water from ON Drain to Coovam river reduces 38% of flood water in ON watershed above Anna Nagar. Both proposals are implementing by PWD in the field.
Dissemination of results of the project through workshops/ brain storming	One inception workshop at Chennai, three training workshops at Chennai

Integrated macro flood (Catchment) and micro flood (Sub basins) studies in urban areas yet to be initiated to address the urban flooding issues in many cities of India

Chennai City Urban Flood Real Scenario (2015)

IMPACT OF CLIMATE CHANGE ON URBAN FLOODING WITH SPECIAL EMPHASIS ON CHENNAI CITY

Acknowledgements:

Funded by Hydrology Project –II as PDS, Govt., of India

Govt., of Tamilnadu, PWD and Chennai Corporation

Patna town

