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INTRODUCTION

Water is a major renewable resource and is a fundamental element in
sustaining integrity of the natural environment.

Both urban and rural areas utilize the groundwater for drinking,
agriculture and industrial purpose.

The process of replenishment of groundwater i1s greatly affected by
changes in climate because groundwater mainly gets recharged by
infiltration and percolation from precipitation and seepage.

Though many hydrologic models are available for simulating changes
in water dynamics, simulation of groundwater table depth i1s usually
difficult and rarely attempted.



CONTINUED...

 Thus extending the SWAT capabilities by computing groundwater table
depth from the SWAT output file, has a greater scope in the current
scenario.

 The relationship between groundwater fluctuation and amount of
recharge entering the aquifer i1s used for calculating groundwater depth

from SWAT output. ]

* Once the model 1s made, it can be used to generate long term data series for
groundwater depth which can later be used for forecasting the groundwater
table depth.



OBJECTIVES

Model the temporal and spatial variation of groundwater depth in
Kechery watershed Using Soil and Water Assessment Tool.

Forecast the groundwater depth using Empirical Mode Decomposition
model.

Development of required future groundwater profile for any season using
the IDW tool.



METHODOLOGY

¢ Simulation of Ground Water Percolation Using
SWAT

]
¢ Estimation of Ground Water Depth

¢ Forecasting Ground Water Depth using EMD method



SIMULATION OF GROUND WATER TABLE
DEPTH USING SWAT

* SWAT outputs are used to compute groundwater table depth for sub
watersheds located within the Kechery river basin based on the
relationship between ground water depth and amount of recharge

] entering aquifer. [

* The simulation of ground water percolation is achieved by following
steps:

1. Watershed delineation, 2. HRU analysis 3. Data input 4. SWAT
simulation



STUDY AREA

* Kechery river basin

* North latitude - 10°25°44.41” to 10°43°17.77”

East longitude - 76°02°05” to 76°21°26.25”

e Area—712.63 Km?
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DATA INPUTS

Digital Elevation Map of Kechery River [STEM 30m]
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Land use map of Kechery watershed for the year 2008
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Soil Map of Kechery Watershed
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CONTINUED...

Weather and Groundwater depth data

* Daily weather data for precipitation, maximum and minimum temperature,

solar radiation, wind and dew point are obtained from the records of the
IMD Thrissur for the period 1985-2009.

* Seasonal ground water depth in seven observation wells located in Kechery
river basin 1s obtained from the Central Ground Water Board, Trivandrum
for a period of seven years
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GROUND WATER DEPTH CALCULATION
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] where
h,.; - Water table depth on day i1 (m).

hy, ;.1 - Water table depth on day i-1 (m).

0., - Base flow recession constant. -ALPHA BF

At =Time step (1 day).

W.ehrg - Amount of recharge entering the aquifer on the day (mmH,0)
vl = Specific yield of a aquifer (m/m). - GW_SPYLD
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CONTINUED...

=(1-exp(-1/0,,))*w,,, +exp(-1/0,,)*w

rchrg i Seep rcrg i-1
Where
= = +
Ws*eep wperc Wcrk
W.., — lotal amount of water exciting on soil bottom profile (mmH,0).
= Groundwater percolation (PERC) (mm).
Weere = Amount of water flow past the lower boundary of soli profile

W, (mmH,0).
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DELINEATED WATERSHED
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Continued...

e 2009 and 2010 - Model calibration
e 2011-2012 - Model validation.

 The SWAT input parameters based recession flow constant (ALPHA BF)
and Specific yield of an aquifer (GW_SPYLD) are found out during ]
calibration by adjusting its value between its limits.

* The base recession constant can take value between 0.1 and 1 and specific
yield can take value between 0.003 and 0.4.
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SWAT SIMULATION

The SWAT model is simulated for the period 1985-2008.

Daily groundwater depth 1s calculated for this period from SWAT output
PERC.

Since this height 1s from aquifer bottom level and observed data is from
ground surface, the sitmulated depth 1s subtracted from highest
groundwater level for the dry season.

This groundwater level for the dry season 1s different for each sub- basin.

For the purpose of comparison, monthly values are computed for the
months for which the observed data are available (January, April, August,
and December).

16



FORECASTING MODELS

Empirical Mode Decomposition (EMD)
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EMPIRICAL MODE DECOMPOSITION (EMD)

* Empirical mode decomposition (EMD), 1s a time series decomposition
technique, used for non-linear and non-stationary time series data.

* Considering non-linearity in groundwater depth , the data set is
decomposed into IMFs and residue.

 The IMFs are oscillating around zeros and have positive instantaneous
frequency.

* For groundwater depth data it has been observed that nonlinearity and
stationarity decreases in higher IMFs compared to previous IMF.
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DEVELOPMENT OF IMFS FROM
GROUNDWATER DEPTH

Identify local maxima and minima of distorted groundwater depth series,

s(t).

Perform cubic spline interpolation between the maxima and the minima to
obtain the envelopes €,,(t) and e_(t), respectively. ]

Compute mean m(t) of the envelopes.

Extract c,(t) = s(t) - m(t).
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CONTINUED...

* ¢, (t)1s an IMF if the number of local extrema of ¢, (t), is equal to or differs
from the number of zero crossings by one, and the average of ¢, (t)
reasonably zero. If ¢, (t) i1s not an IMF, then repeat steps 1-4 on ¢, (t)
instead of s (t), until the new c, (t) obtained satisfies the conditions of an
IMF.

. Compute the residue, r,(t) = s(t) — c,(t),

 If the residue, 1, (t), 1s above a threshold value of error tolerance, then
repeat steps 1-6 on 1, (t), to obtain the next IMF and a new residue. This
threshold value can be taken as Cauchy is type stopping criteria and can
found using equation.
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FORECASTING OF IMFS AND RESIDUE
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FORECASTING OF IMFS AND RESIDUE
USING ‘nntool’

Training function -TRANLM
Adaption learning function -LEARNGDM.

The mput layer has one neuron, hidden layer has ten neurons and output
layer has six or seven neurons.

After training the network epochs are selected as 1000, which giving good ]
performance curve.

After checking the regression the network is simulated using forecasted
rainfall for the period 2010-2014, which was the validation period.

The IMFs and residue for the period 2010-2014 is obtained and the sum of
these values gives predicted groundwater depth.
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GENERAL ARCHITECTURE OF SELECTED

NEURAL NETWORK

Hidden Laver
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Result and discussion
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CONTINUED...

Typical example for calibration plot (Adatt Subbasin)
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VALIDATION

Coefficient Of Determination (R?) And
Nash -Sutcliffe Efficiency (NSE)
Between Actual And Simulated Groundwater Depth

Well Point Coefficient of Nash -Sutcliffe
Determination (R?) | Efficiency (NSE)

Wadakkancherry 0.68 0.51
Kechery 0.77 0.77
Mulankunnathukavu 0.86 0.81
Pattikad 0.6 0.51
Adatt 0.8 0.85
Trichur 0.81 0.74
Engandiyur 0.79 0.74

28



CONTINUED...

Typical example for validation plot (Adatt)
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SIMULATED GROUNDWATER DEPTH

Groundwater Depth of Wadakkanchery Sub Watershed
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GROUNDWATER DEPFTH M)

Groundwater Depth of Kechery Sub Watershed
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CONTINUED...
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CONTINUED...

Groundwater Depth of Trichur Sub Watershed
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STATISTICAL PARAMETERS
BETWEEN OBSERVED AND SIMULATED
GROUNDWATER DEPTH (EMD METHOD)

Coefficient of Root Nllzean Square
Well Point rror
Determination (R?) (RMS Error)

Wadakkancherry 0.972 0.089
Kechery 0.946 0.085
Mulankunnathukavu 0.979 0.0815
Pattikad 0.88 0.0895
Adatt 0.989 0.0797
Trichur 0.995 0.075
Engandiyur 0.901 0.086
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GROUNDWATER PROFILE OF KECHERY
WATERSHED (JANUARY, 2017) — IDW
TOOL
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CONCLUSION

« The Kechery watershed 1s modeled satisfactorily using the hydrologic
modeling tool SWAT at the basin and sub-basin level.

 The model efficiency (R?and NSE) are obtained between 0.7 and
0.85 during calibration and validation period for all the sub-basins except
one which may be due to inaccurate observed data. [

 The validated model 1s used to compute groundwater depth at the
sub-basin level based on the relationship between groundwater
recharge and depth. Satisfactory results were obtained for all sub-basins
except one.
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CONTINUED...

* The prediction of groundwater depth using EMD method 1s found to be
effective because it considers the non-linearity of input data and forecasting
1s done individually for each IMFs and residue.

I ¢ From the predicted groundwater depth available at different well
points, the groundwater profile i1s developed using IDW method for
any desired period.

* Knowledge about the water surface profile and its spatial and temporal
variations would be very useful in the planning and implementation
of water conservation policies
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