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Introduct M

Why soil moisture?

Why Soil Moisture is so Important in Hydrological Modelling?

Controls partitioning of rainfall into runofft,

i _ — Surfac
infiltration, and evapotranspiration.

Flow

However, it posses lot of uncertainties .... Percolation

The accurate measurements of soil moisture is
tedious task over large spatial extents
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StudyAreaandData »  Methods

Satellite observations

Other sources of soil moisture information over large spatial scales
Includes satellite observations

T y

http://hsaf.meteoam.it/description-sm-ascat-ab-nrt.php

Spatial Resolution ??
Accuracy ??
Depth ??
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Data Assimilation

Combines information from imperfect models and uncertain data in
optimal way (BLUE) to achieve uncertainty reduction
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Model Forecast (X(t))

Analysis/Estimate (X(t))

Forcing (F(t-1)) X8 =XP 4+ K(Z — HX?) » Model (M,X(t))

Observation(Z(t))

Where, Kis K = Y¥*[374 + 2#]™! and for scalar case 2f = —!'I S
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Introduction Study Area and Data Mm

Current problems

Extrapolating the observed information from surface layer to soil
profile during ensemble model simulations is the one of major hurdle
being experienced by past studies

(e.g. Chen et al. 2011) and hence some of them have adopted slightly sub-optimal algorithms (e.g.
use of nudging method by Lievens et al. 2015).
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Improving hydrologic predictions of a catchment model via assimilation

Y ) SMOS soil moisture assimilation for improved hydrologic simulation in _—
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SWAT-predicted vertical coupling results in limited updating of deep soil moisture, regardless of the
SWAT parameterization chosen for root-water extraction. Likewise, a real data assimilation experiment
. SUTTIOTStaTe-Thservatiors—iras-orty ted-sTeress—T g -upper-tayer-soit
e and is generally unsuccessful in enhancing SWAT stream flow predictions. Comparisons against
orannd_hacad nhearuatinne encoser that SWAT cionifirantlv nndar-nradicte tha maonituda af vartieal eail

Therefore improved methodologies for ensemble forecasting of soil %%
moisture at multiple soil layers is required.. H-R S A
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Introductlon Study Area and Data Mm

Objective of this study

To provide better surface to sub-surface soil moisture error correlation
without altering model physics during ensemble simulations.
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Introduction M

Study Area, Data and Model

The present study has been carried out in Munneru river basin which is
one of the left tributaries of Krishna River, India.
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Figure: Geographical location of the study area along with the ‘s:;%
land use information, river network and stream gauge locations. H-R SA
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Intrduction Study Area and Data Mm

Study Area, Data and Model

Table: List of datasets used in the present study

Data type Dataset Source Scale/ Period Remarks Reference
Resolution
Rainfall IMD Gridded 0.259x 0.25° 2003 —2013 Interpolated gauge data Pai et al., (2014)
. Srivast tal.,
Temperature IMD Gridded 10x 10 2003 — 2013 Interpolated gauge data (2r cl)voa;s) avaeta
Forcing o :
Variable Humidity NCEP - CFSR 0.25°x0.25° 2003 -2013 Reanalysis Saha et al., (2010)
Wind Speed NCEP - CFSR 0.25%9x 0.25° 2003 — 2013 Reanalysis Saha et al., (2010)
Solar Radiation NCEP —CFSR 0.25°x0.25° 2003 —2013 Reanalysis Saha et al., (2010)
State : . : . .
Variables Soil moisture SMOS L3 0.259x 0.25°  2010-2013 Passive microwave retrievals  Kerr et al., (2001)
Outflow Discharge CWC Gauge - 2006 - 2013  Observed gauge data CWC,(2012)
Land Use NRSC 1:250,000 2007 gaetgved from AWIFS optical 25, (2008)
Thematic . FAO HWSD Prepared from soil survey FAO/IIASA/ISRIC/ISS
I 1 2
Data Sol V1.2 5,000,000 2009 datasets CAS/JRC, (2012)
Topography SRTM GDEM 90m 2002 Interferometric SAR product Jarvis, (2008)
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Introductlon Stud Area and Data Mm

Study Area, Data and Model

SWAT Hydrology Model
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Introduction Study Arcaand Daia > Methods > Resulis > . Conclusions __

Methods

Model Calibration: 2006-2009 Model Validation: 2010-2012
Forecast Error

Sampling method used: Latin Hypercube

Number of Ensemble: 100

Rainfall error std. dev.: 0.15*Rainfall magnitude

Direct perturbation to soil layers:
layer 1 (0-50mm) - 0.1 mm/mm
layer 2 (0-50mm) - 0.07 mm/mm
layer 3 (0-50mm) - 0.01 mm/mm
(Vertical error correlation of one)

Perturbation to soil storages: 0.1 mm/mm
(Error correlation of one with ensemble inflow to soil layer)

Observation Error &
Observation error is defined using data quality flags varying from 0.01 to 0.25~"%
mm/mm standard deviation H-R. A
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Scenario 1 (EnKF1)

Perturbed (stochastically represented) only model forcing and state variables

Scenario 2 (EnKF2)

Perturbed (stochastically represented) only model forcing and state variables as
well as key model parameters representing soil water routing.
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Results: error correlation

Error correlation between surface and sub-surface soil moisture Key outcomes

[ com, - [ com o v' The error
o Corm, . . o Corm g P N e correlation of
. - R forecasted soil
S L ° A P moisture increased
= 30 ® 2 30r '/ I - i . .
g | . 2 . along with profile
2 x o E * ¢ /'I o o o O//I * ¥ *; * ’II g .
2.4 § . i, e o i i soil water inflow
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* 4 : : oy % g fe 28/~ | ¥ Improvement in
4 : LS correlation shows
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N I . L D s that better coupling
o 70'4Ens:rl‘?1ble()Corrsljatio:‘l R Ensemble Cor[:felationuls " 1 between top SO||
(a) (b)
layer and second
soil layer than top
Scatter plot of error correlation of the first layer to each subsurface layer with layer to third layer
respect to the mean ensemble inflow to soil profile for which is more
(&) EnKF1 run with unperturbed soil water storage capacity, and .
(b) ENnKF2 run with perturbed soil water storage capacity
L1=ING 2 A
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Results: error correlation
- |enkrr [Enkr2 |
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EnKF1

Table: Average error correlation of the first layer to each subsurface
layer over entire basin (mean ensemble inflow >5mm)

(a) EnKF1 run with unperturbed soil water storage capacity, and
(b) EnKF2 run with perturbed soil water storage capacity

Key outcomes

v' The error
correlation
structure is
improved most of
the times during
entire simulation
period

v" The overall

Improvement in
error correlation is
again better for
second layer than
top layers than
bottom ones
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ReSUItS Soil Moisture assimilation
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Introduction Study Area and Data Mm

Results: stream flow evaluation

NSE_OL =0.573 NSE_EnKF1 =0.667 NSE_EnKF2 =0.703
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Introduction Study Area and Data Methods Results : Conclusions

Conclusions and Future Directions

« Randomizing the key parameters in soil water routing facilitates
ensemble soil water storages which further improves the error
correlation structure required for data assimilation applications

 The SMOS soil moisture can be used for improving the streamflow
estimates by assimilating into large-scale distributed hydrological
models operating at a daily time step

» Further studies are needed to understand the requirements of
model structures that could handle stochastic or ensemble model
simulations to help related applications.
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Publication

Based on this concept, a recent article is available at
https://www.sciencedirect.com/science/article/pii/S0022169417307357

Journal of Hydrology 555 (2017) 683=696
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SWAT model by assimilating remotely sensed soil moisture observations
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large catchment. This study has been carried out in Munneru river catchment, India, which is about
10,156 km?. In this study, an EnkF based new approach is proposed for improving the inherent vertical
coupling of soil layers of SWAT hydrological model during soil moisture data assimilation. Evaluation
of the vertical error correlation obtained between surface and subsurface layers indicates that the vertical

assistance of Magdeline Laba, Associate coupling can be improved significantly using ensemble of soil storages compared to the traditional static
Editor soil storages based EnKF approach. However, the improvements in the simulated streamflow are moder-
ate, which is due to the limitations in SWAT model in reflecting the profile soil moisture updates in sur-
Keywords: face runoff computations. Further, it is observed that the durability of streamflow improvements is longer
Data assimilation when the assimilation system effectively updates the subsurface flow component. Overall, the results of
SMOS the present study indicate that the passive microwave-based coarser-scale soil moisture products like ¢
EnKF SMOS hold significant potential to improve the streamflow estimates when assimilating into large-
SWAT scale distributed hydrological models operating at a daily time step. H R A
;::E:r;;f::r;::dricﬁom © 2017 Elsevier B.V. All rights reserved. Hydro-Remote Sensing Applications Group
I 9 Department of Civil Engineering
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