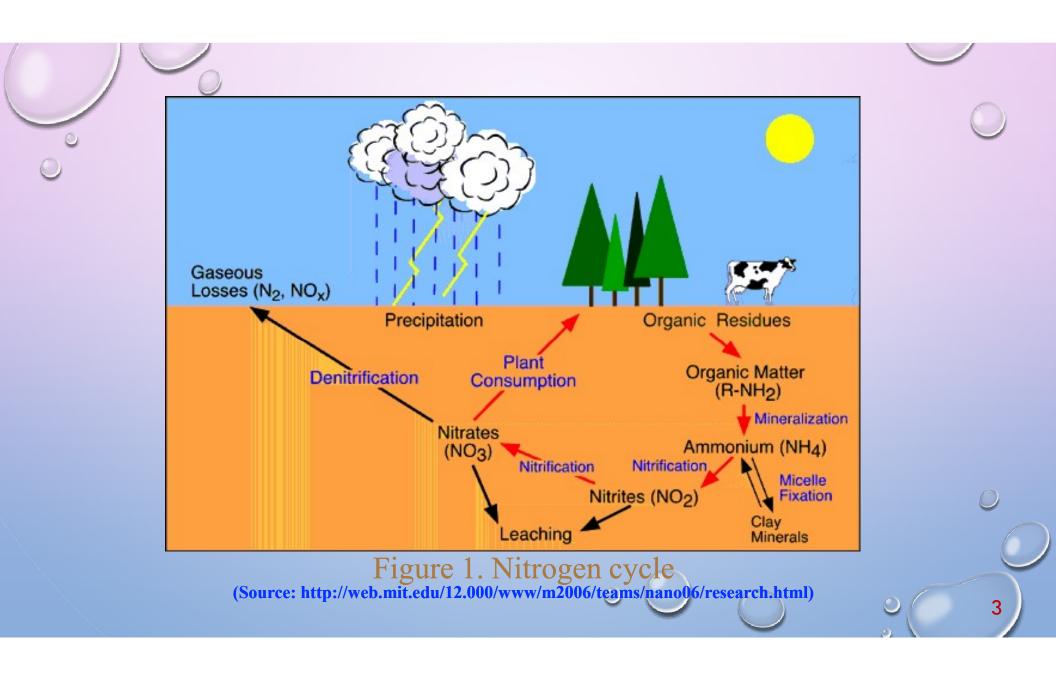
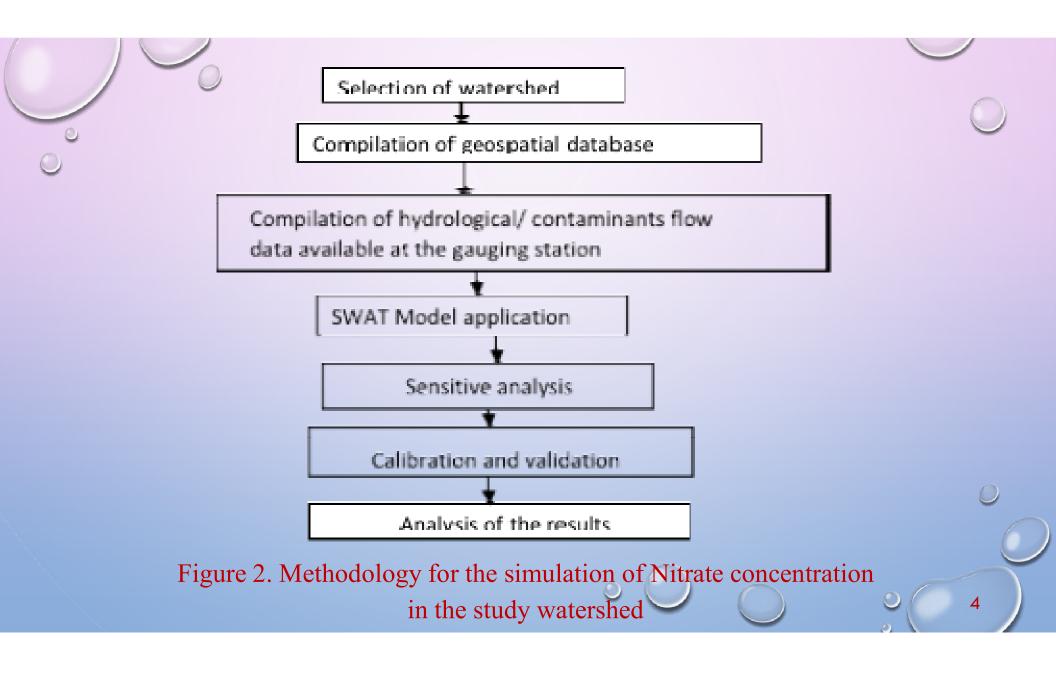
SIMULATION OF NITRATES POLLUTION IN AGRICULTURAL WATERSHED

2018 SWAT CONFERENCE, INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI, INDIA

Y VAMSI KRISHNA, K. VENKATA REDDY, Y. NAVATHA

Assistant Professor Department of Civil Engineering National Institute of Technology Warangal kvreddy@nitw.ac.in kvreddy229@gmail.com Mobile: +91-9441666379


January 11, 2018



- ✓ Water Quality
- ✓ Pollutants (Point Source & Non Point Source)
- ✓ Nitrate Pollution
- Hydrological/Pollutant Transport Models
- ✓ Soil and Water Assessment Tool (SWAT)

- Selection of watershed and NPS contaminant transport model
- Calibration, validation and sensitivity analysis of the model for runoff and nitrate flow in the river
- Analysis of the spatio-temporal characteristics of flow and contaminant transport

Input Database

►DEM – SRTM -30M

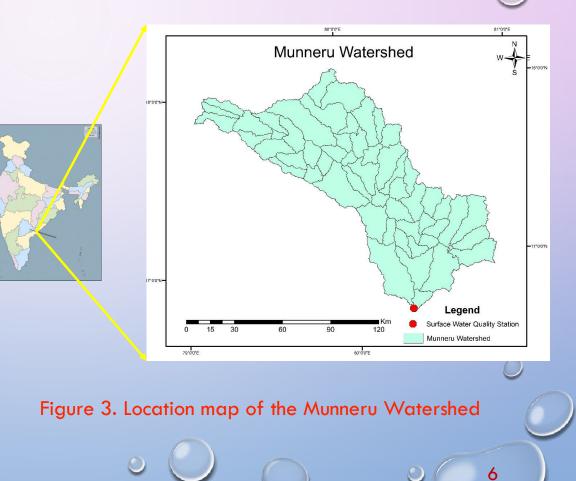
Source: https://earthexplorer.usgs.gov

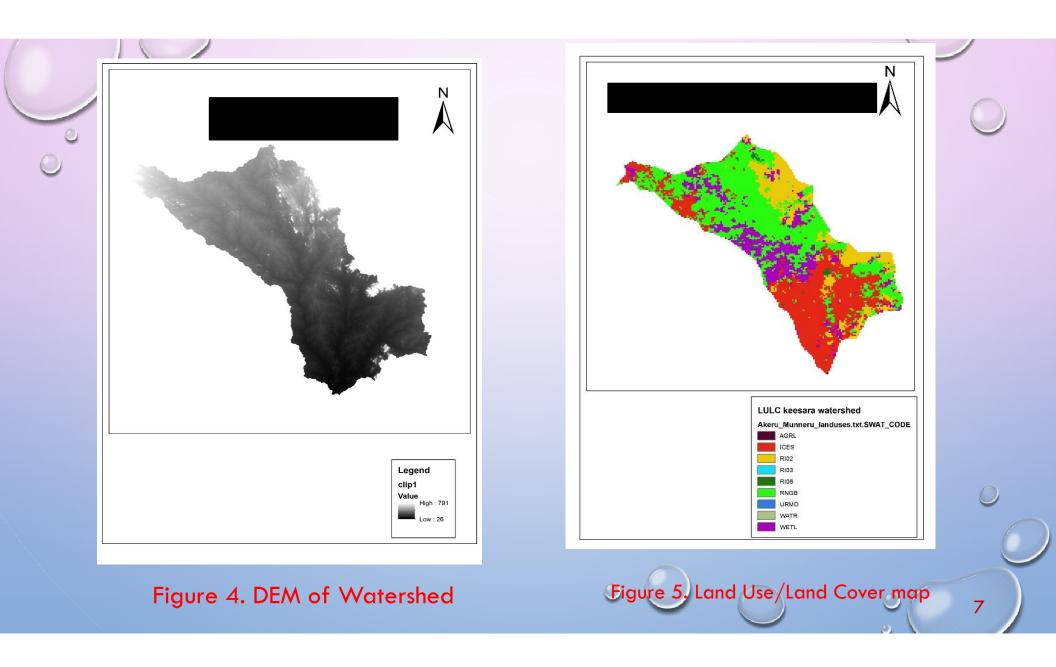
Soil Map & Land Use (LU)/Land Cover (LC) Map

Source: http://swat.tamu.edu/software/links/india-dataset

Daily Discharge and Contaminants Data at Gauge

Source: CWC, Hyderabad


Land Management Data


Source: Joint Directorate of Agriculture, Krishna District, Andhra Pradesh

Study Area

Munneru Watershed With
 Drainage Area of 9854 km²

- The surface water quality station at the Keesara, Andhra Pradesh
- Records total of 41 parameters (Nitrates, Phosphates, Nitrites, Sediment Yield)
- Monthly data are available with
 Central Water Commission
 (CWC) Hyderabad office

SWAT MODEL

SWAT (Soil Water Assessment Tool)

- Physically based continuous event river basin scale hydrological model
- It is the semi distributed parameter model and includes spatial heterogeneity

SWAT CUP – (Calibration and Uncertainty Program)

• Calibration: Model testing with known input and output to adjust or estimate factors

8

• Validation: Comparison of model results with an independent dataset (Without Further Adjustment)

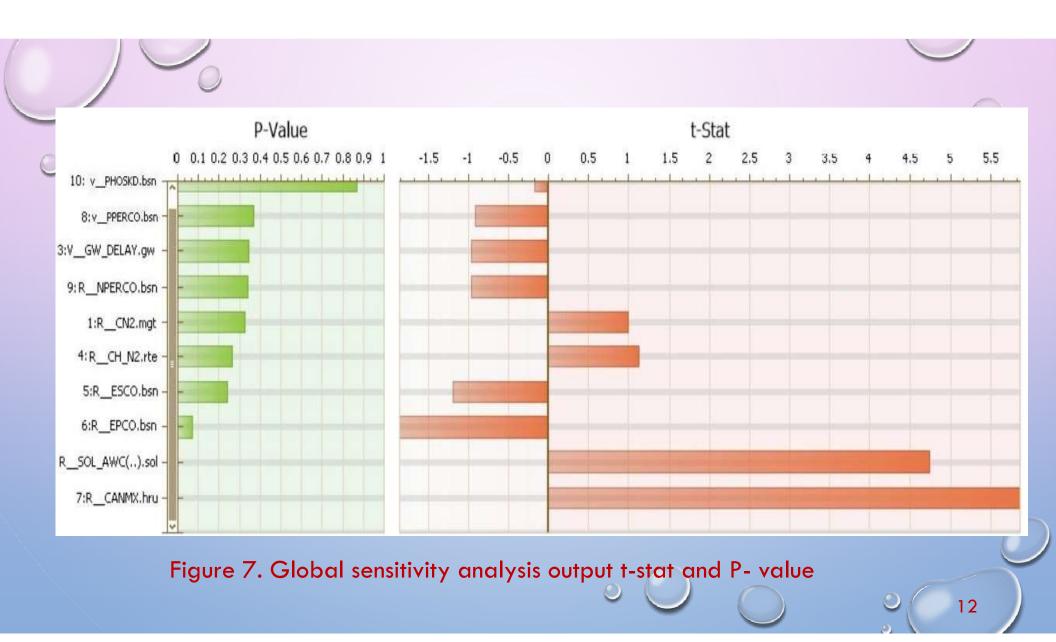
Two Types of Sensitivity Analysis

- Local By changing values one at a time
- Global By allowing all parameter values to change
- Sensitivity of one parameter often depends on the value of other related parameters
- The problem with one-at-a-time analysis is that the correct values of other parameters that are fixed are never known
- The disadvantage of the global sensitivity analysis is that it needs a large number of simulations

Land management

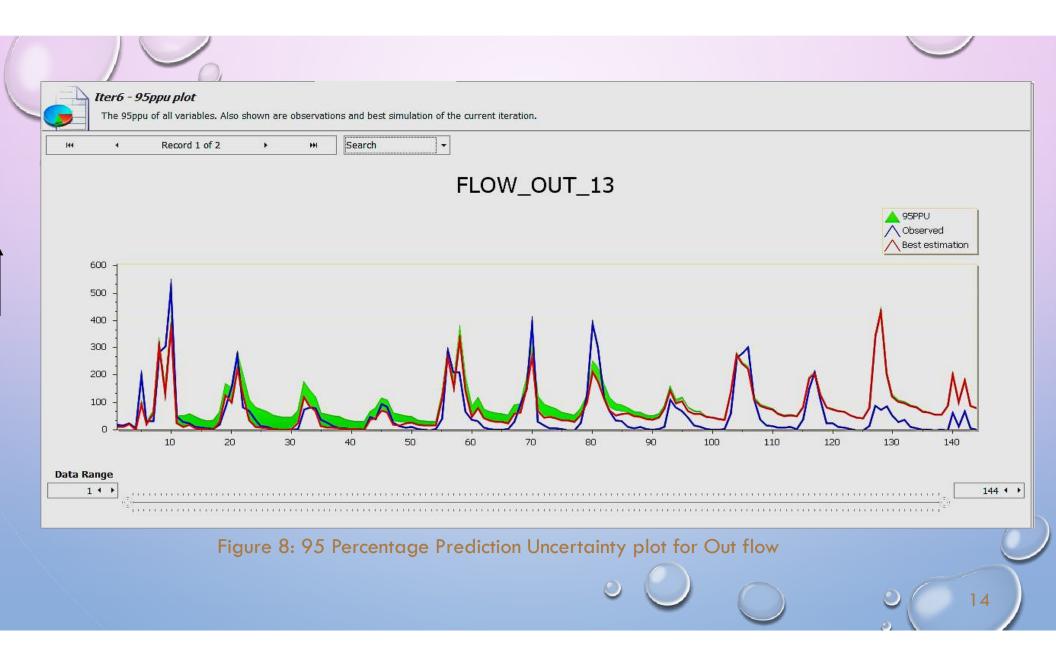
- Different management operations need to be used
- ≻Tillage
- ≻Irrigate
- ≻Plant growth
- ➢ Pesticide
- ≻Harvest

Add Year	Cu	rrent Ma	nagement	t Operations						
		Year	Month	Day Operat		ı	Crop			
		1	6	10	Tillage op	eration				
Delete Year		1	6	18		application				
		1	6	20		in. growin	RICE			
Add Operation	n +	1	10	30	Harvest a	nd kill ope				
Delete Operatio	n [Load Sch	edule
Delete Operatio									Loga och	caulo
									1	
Edit Operation	1								Save Sch	edule
tilizer Application	n Parameters	-								
								D		
 Schedule by Date Schedule By Heat Units Y 			Year of Ro	Year of Rotation : 1 June				5	-	
	eat onits					In the second second	-	▼ 18	<u>8</u>	-
ERT_ID				FRT_KG		FRT_SU	RFACE			
Jrea			-	180		0				
									1.1	
								Can	cel OK	
dit Values	Extend Pa					ected HRUs				
dit Values	100000000000000000000000000000000000000		Edits T General P	arameters		ected HRUs ubbasins	Land Use		Soils	
	Extend	ALL MG							Soils	
dit Values	Extend	ALL MG	T General P						Soils	
ancel Edits	☐ Extend ☐ Extend	ALL MG ⁻ Manager	T General P	tions				[
	Extend Extend Extend Extend Extend	ALL MG Manager Edits to (T General P ment Opera Current HRI	tions				[Soils Slope	
ancel Edits	☐ Extend ☐ Extend	ALL MG Manager Edits to (T General P ment Opera Current HRI	tions				[
ancel Edits	Extend Extend Extend Fextend Fextend Extend	ALL MG Manager Edits to (Edits to /	T General P ment Opera Current HRI	tions J				[


Evaluation of model prediction

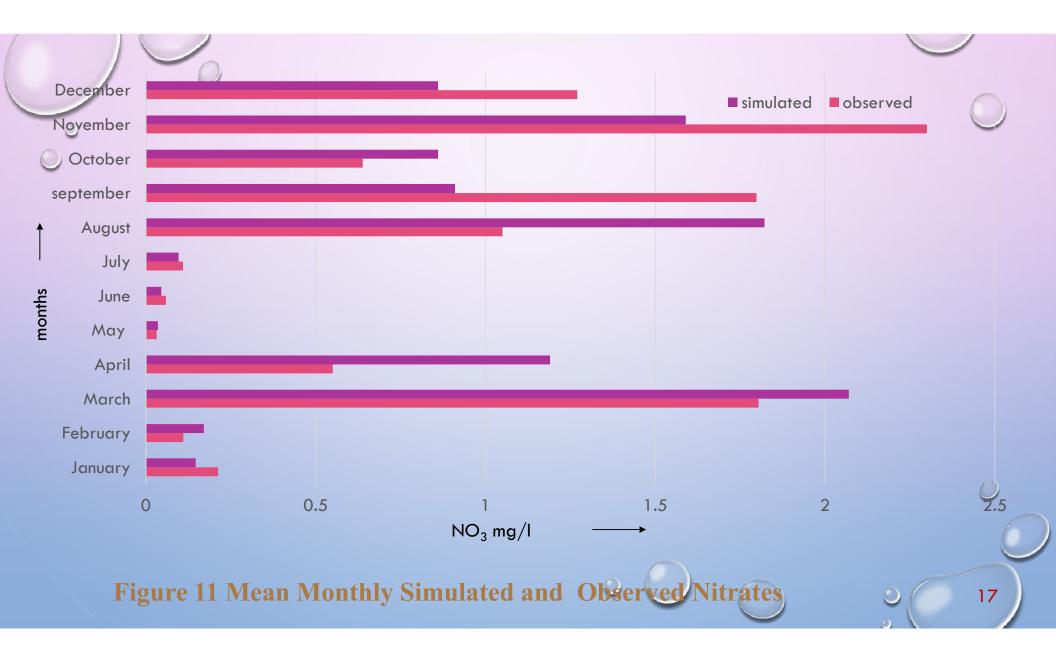
Coefficient of Determination (R²)

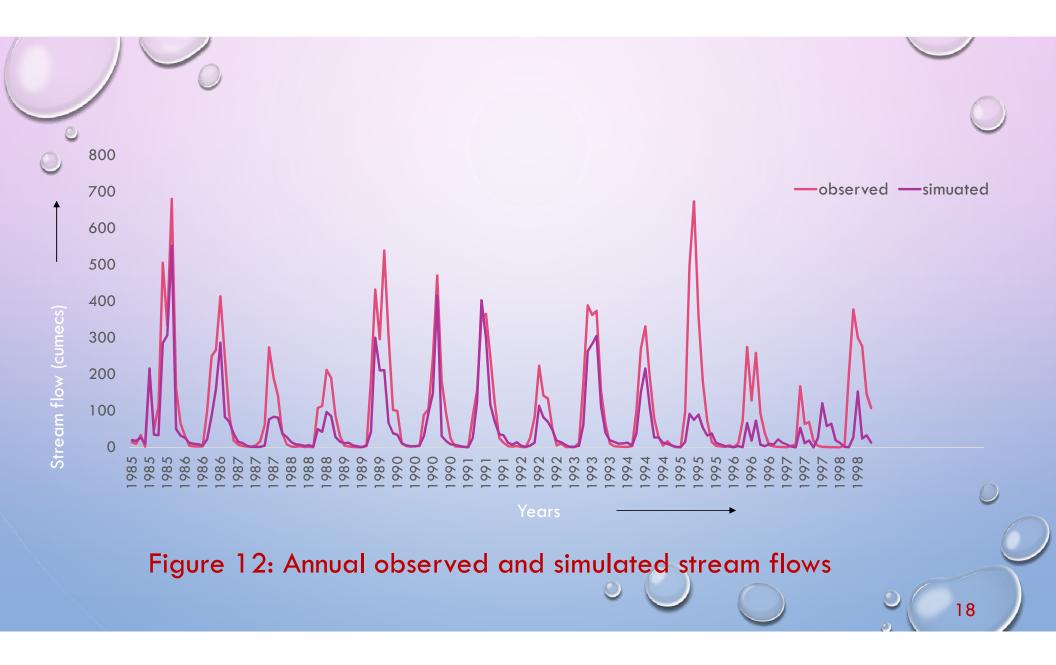
- Indicator of strength of relationship between the observed and simulated values
- ✓ It represents the percentage of variance in the measured data


Nash-Sutcliffe Efficiency

- It asses the predictive power of the hydrologic model
- It is a normalized statistic that determine the relative magnitude of residual variance compared to measured data variance
- NSE indicate how well the plot of observed versus simulated data fits the 1:1
 ine

Sensitive parameters rankings


	Variable name				Rank
		Range	t-stat value	P value	Nalik
S					
Runoff (CANMX.hru	0-100.0	5.8	0	1
Runoff S	SOL.AWC.sol	0.0-1.0	4.6	0	2
Runoff E	EPCO.bsn	0.0-1.0	-2.0	0.08	3
Runoff E	ESCO.bsn	0.0-1.0	-1.2	0.23	4
Runoff (CH_N2.rte	0.2-2.0	1.2	0.26	5
Runoff (CN2.mgt	0.01-1	1.0	0.33	6
Nitrate N	NPERCO	100-200	-0.9	0.36	7
Runoff	GW_DELAY.bsn	0.0-0.3	-0.9 0	0.36	8 0



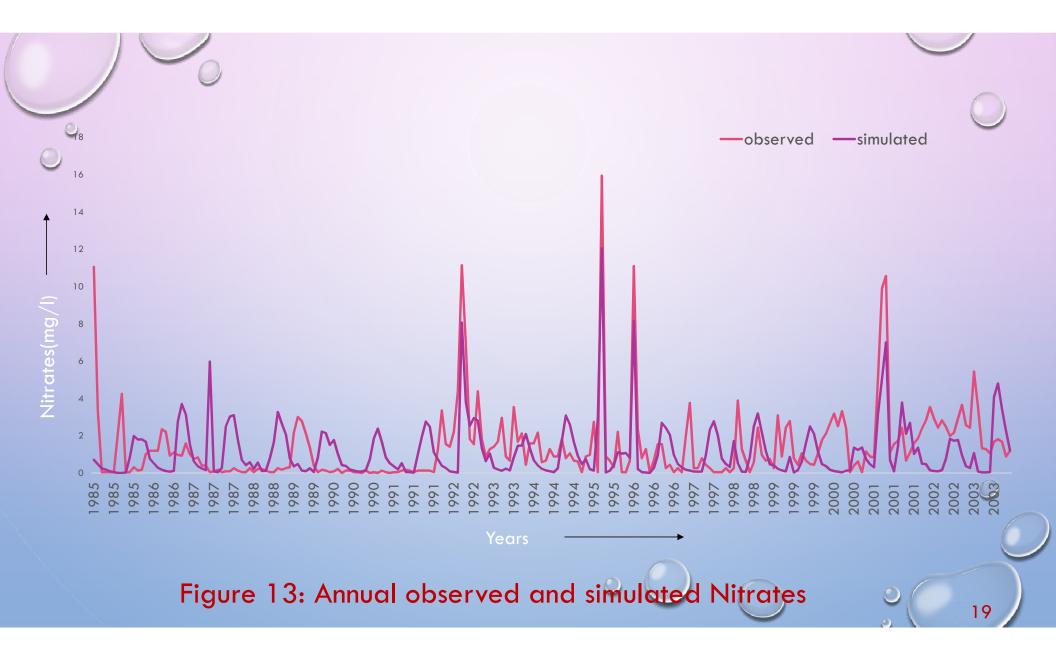

Table 2 Mart	Monthly Simulated and	Observed Elevis
Month	Monthly Simulated and (Observed(m ³ /sec)	
Qanuary	17.15	13.23
February	9.53	6.65
March	8.66	6.54
April	4.46	2.50
may	2.36	1.69
June	15.80	22.33
July August	7.58 383.36	10.26 222.80
September	264.22	325.26
October	249.47	311.97
November	91.13	130.12
December	39.76	45.58

Table 3 Mean Monthly Simulated and Observed Nitrates

Mean Monthly Nitrates	Observed	Simulated
January	0.21	0.14
February	0.11	0.17
March	1.80	2.07
April	0.55	1.19
May	0.03	0.03
June	0.05	0.04
July	0.10	0.09
August	1.05	1.82
September	1.79	0.91
October	0.63	0.86
November	2.30	1.59
December	1.27	0.86

Summary and Conclusions

- SWAT model calibration and validation is carried out for the runoff and Nitrates
- ✓ For runoff simulation, R² value obtained is 0.6 and the Nash-Sutcliffe efficiency obtained is 0.53 and for Nitrates, R² value is obtained is 0.35 and NSE is 0.33
- From the results, it is observed that the pollutants content (Nitrates) along with outflows are observed more during August and November
- Nitrate transport was occurred more during monsoon seasons and harvesting period

Further work

- Other contaminants in the outflow can be determined
- In the present work only SUFI-2 is used. Other optimization techniques can be studied.
- Finding out the critical areas for pollution in the watershed
- o Developing best management practices

Acknowledgements

A. Mohan Reddy Deputy Director and other officials in Central Water Commission (CWC), Hyderabad for providing the stream flow data and other quality measurements at Keesara gauge station, Munneru River, India.

References

- Ashok Mishra, Rajendra Singh, Vijay P.Singh .,2010, Evaluation of Non-point Source N and P Loads in a Small Mixed Land Use Land Cover Watershed, *Journal of Water Resource and Protection*,2010 *Vol-2,363-372*.
- Behera, S., Panda, R.K., 2006, Evaluation of Management Alternatives for an Agricultural Watershed in a Sub-humid Subtropical Region Using A Physical Process Based Model, *Journal Of Agriculture, Ecosystems And Environment. 113, 62-72.*
- Yatindranath., Kar, Chowdary, V.M., S., Adiga, S., 2004. Modelling of Non- Point Source Pollution in a Watershed Using Remote Sensing And GIS. *Journal Of Indian Society Of Remote Sensing*. Vol 32(1), 59-73.
- P. Srivastava, Kati W Migliaccio, (2007). —Hydrologic Components of Watershed-scale Model. *American Society Of Agricultural And Biological Engineers* ISSN 0001 -2351. Vol. 50(5): 1695-1703.
- Lizhong Hua, Xiubin He, Yuan, hongwei 2012 Assessment of Runoff And Sediment Yield Using The AGNPS Model In Three-gorge Watershed Of China. *International Journal Of Environmental Research And Public Health.*

- Mahdi Jamshidi, Masoud Tajrishy, Mahdi Maghrebi, (2010). —Modeling Of Point And Non-point Source Pollution Of Nitrate With SWAT In The Jajrood River Watershed, Iran. *International Agricultural Engineering Journal* Vol. 19, No. 2 23.
- Saleh. A And B. Du, (2004). —Evaluation Of Swat And HSPF Within Basins Program For The Upper North Bosque River Watershed In Central Texa. *American Society Of Agricultural Engineers ISSN* 0001–2351; Vol. 47(4): 1039–1049.
- Yawar, Md. A. K., Gani, K. M., Chakrapani, G.J., (2016). Assessment Of Surface Water Quality And Its Spatial Variation. A Case Study Of Ramganga River, Ganga Basin, India. *Arabian Journal Of Geoscience*. 9(28), 1-9.
- Narasimhan.B, Srinivasan.R, Bednarz.S.T, Ernst.M.R And Allen.P.M (2010), —A Comprehensive Modeling Approach For Reservoir Water Quality Assessment And Management Due To Point And Nonpoint Source Pollution, *American Society Of Agricultural And Biological Engineers* ISSN 2151 -0032, Vol. 53(5): 1605-1617.

Thank you Seasons Greetings