

Prediction of low flow in mid-sized natural basin using GRACE derived daily Total Water Storage Anomaly

Durga Sharma¹, and Basudev Biswal^{1,2}

¹Department of Civil Engineering, Indian Institute of Technology Hyderabad, ²Department of Civil Engineering, Indian Institute of Technology Bombay

Outline

INTRODUCTION

BACKGROUND STUDY

DATA AND DATA ANALYSIS

METHODLOGY

ANALYSIS

CONCLUSION

Introduction

Spatial Scale

Satellite storage measurement

Monitoring and management of freshwater resources has long depended upon on-the-ground measurements.

J. S. Famiglietti et. al 2015

Work with GRACE

Paper	Resolution
Characteristic mega-basin water storage behavior using GRACE (Reager, J. T., & Famiglietti, J. S. (2013)	Spatial Resolution large Temporal Resolution – 1 month
Analysis of terrestrial water storage changes from GRACE and GLDAS Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008).	Spatial Resolution large Temporal Resolution – 1 month
GRACE storage-runoff hystereses reveal the dynamics of regional watersheds. Sproles, E. A., Leibowitz, S. G., Reager, J. T., Wigington, P. J., Famiglietti, J. S., & Patil, S. D. (2015).	Spatial Resolution large Temporal Resolution – 1 month
Daily GRACE gravity field solutions track major flood events in the Ganges-Brahmaputra DeltaGouweleeuw, B. T., Kvas, A., Grüber, C., Gain, A. K., Mayer-Gürr, T., Flechtner, F., & Güntner, A. (2017).	Spatial Resolution large Temporal Resolution – 1 day
Prediction of low flow using GRACE derived daily Total Water Storage Anomaly (Our Analysis) 10/1/2018	Spatial Resolution - mid size river basin Temporal Resolution - 1 day 5

Storage-Discharge Relationship from GRACE

Objective of our study

To use GRACE derived daily Total Water Storage Anomaly for predicting low flow in mid-sized natural basin

Data and Study Area

Daily Discharge data from USGS waterwatch ITSG-GRACE 2016 DATA

Methodology

$$S = (GW + SM + SWE + T + E + RS)$$

$$\frac{dS}{dt} = P - Q$$

$$Q = f(S)$$

$$\frac{dQ}{dt} = \frac{dS}{dt}$$

twsa(total water storage) = S

Methodology contd...

$$TWSA_m = TWSA - min(TWSA) + 1$$

1 Daily discharge data

$$\frac{dQ}{dt} = -kQ^{\alpha}$$

Brutsaert and Nieber

2 Daily twsa data

 $k = k_N^{'} Q_N^{-\lambda_N}$

Biswal and Marani 2010

Find recession events and corresponding twsa

Determine k at $\alpha = 2$

Using this k, explore

 $k = k_N^{"} twsa_{pN}^{-\lambda_{N'}}$

relationship between k and twsa

Methodology contd...

Integrating equation $\frac{dQ}{dt} = kQ^{\alpha}$

Between (t=0, Q_0) and (t= t_t , Q_t) and by taking $\alpha = 2$ and k as

$$k = k_N^{"} twsa_{pN}^{-\lambda_{N'}}$$

We have

$$Q_t = \frac{Q_0}{(1 + k_N^{"} twsa_{pN}^{-\lambda n} t_t Q_0)}$$

Our Approach

When only discharge is decreasing

When both discharge and TWSA are decreasing

Results:

Generating scatter plots for past twsa and k.

Only discharge is decreasing

Strong relationship between power-law recession coefficient and initial storage (TWSA at the beginning of recession event).

When both discharge and twsa are decreasing

Relationship increases significantly, when we consider decrease in both discharge and *twsa*.

Appreciable relationships are observed between k and past TWSA values implying that storage takes time to deplete completely.

10/1/2018 **17**

$$\boldsymbol{Q}_{t} = \frac{\boldsymbol{Q}_{0}}{(1 + \boldsymbol{k}_{N}^{"}tws\boldsymbol{a}_{pN}^{-\lambda n}t\boldsymbol{Q}_{0})}$$

Prediction Results

Conclusions

Daily storage-discharge relationship is highly dynamic, which generates large amount of scatter in storage-discharge plots.

There is a strong relationship between power-law recession coefficient and initial storage (TWSA).

Furthermore, appreciable relationships are observed between recession coefficient and past TWSA values implying that storage takes time to deplete completely.

With such a coarse data we got median Nash–Sutcliffe efficiency of 0.45.

Result will increase significantly by using finer resolution data

Thank you