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. tice now. In particular, channel network morphology based instantaneous unit hydrographs (IUHs) are
E{‘fﬂsiiz?ﬁgfﬂ?ffﬂi widely used for modelling of flood response. However, very few attempts have been made so far to use




Catchments are complex systems
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The goal of modelling efforts is to abstract these complex
systems to as to enable:
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A goodness-of-fit statistic or objective functions quantifies the distance between
model output and observations
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Common objective functions such as the NSE, RMSE, or percentage bias collapse this information
into a single value




streamflow [mm/d]

Most common objective function lead to un-identifiability of
one or more model parameters
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All simulations yield an RMSE value of 0.60! Only some parameters are identifiable using RMSE.
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Challenges in model structure and parameter identification
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Recent studies suggest a modular approach to model building

K-theory

Canopy
turbulence

L-theory

Atmospheric
stability

Louis
Obukhov

. area

Capacity
limited

Linear above
threshold

Melt drip
% Linear reservoir

Topographic

drift factors

Blowing snow
model

Canopy
radiation

ch

Beer's Law

2-stream vis+nir

Soil water

aracteristics

Supercooled
liquid water

!
V4 PR S temperature ,’ A \
“  Canopy \ Soil N \
\ temperature temperature ,’
o s / SR ‘

-

storage '

~‘

Instant Gravity
outflow drainage

Canopy ‘w) Solver

’ - ‘
Aquifer
storaze

ﬁl

2-stream broadband

O Hydrology

O Thermodynamics
L
O Physical processes

~ . .
, Conservation equations

Xxx Model options

Rooting profile

Ball-Berry
Soil Stress function

Boussinesq

Kinematic

Conceptual aquifer

Vertical
redistribution

Gravity drainage
Darcy flux
Multi-domain

Darcy
Green-Ampt
Frozen ground

Explicit overland flow
Water table (TOPMODEL)

Xinanjiang (VIC)

Clark et al., 2015, SUMMA, WRR




Beyond NSE: including hydrologic signatures in model

assessment
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“Pareto dominance based multiobjective optimization yields the
highest level of consistency among all formulations.”
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Our study: compare model performance for a proposed

routing structure
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Biswal and Singh, 2017, AWR The two flow components can then be modelled separately.




The geomorphic hydrological response model (GHRM)

CFIUH:u,.(t) = a - u,(t) + (1 — a) - u,,(t)(a the splitting parameter)
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We create two model structures based on GHRM and
compare it against a liner reservoir type routing
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|dentifying the behavioral parameter space using multiple

PDM
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Using multiple objectives allows us to obtain envelopes of
streamflow for each model
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We find significant spatial variation in the contribution
of each model to the Pareto optimal set

Multiple indicator
analysis
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NSE performance of the three model structures was

comparable
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A multi-dimensional assessment of model performance
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Partitioning of flow varies significantly between linear
routing and geomorphological routing

1

0.9

08

07

: . —F T \ 08}
. ‘ R — s
%3 § Jelale L
_J_ .- 0O o4 gr
[°/ O
02 "
| -
Watershed location is shown by a circle 02 na na 08 1 8
and color denotes the model with Alpha [_]
maximum contribution to the Pareto
sets ‘ '
08 “A : .~ 11 s = L 1
, 07 . - Cd e W 2 1
I 06 ) .
‘ 0 . :
- E 05 / 0 0.2 0.4 0.6 0.8 1
‘ ; 04
(@)
03 Alpha [_] .
02 Linear @
0.1
0 GHRM @
0 02 04 06 0.8 1
Alpha [-]

Cumulative distribution of split parameter across the Pareto optimal sets shows
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The recession behavior changes considerably
between linear and geomorphology based models

Simulations for the Pareto optimal set
with the best NSE value for each model

107 107
5 = | =
8", cu
€ 107 107 ‘x
£ E
d“ -10° 1 0_100-

1072 160 102 , 71(.30 7
dQ/dt [mm/day] dQ/dt [mm/day]

Biswal and Singh, 2017, AWR

1072 10°

dQ/dt [mm/day]

Linear@
GHRM@
GHRM-NS@
Observed©

Watershed location is shown by a circle and color
denotes the model with maximum contribution to

the Pareto sets




The recession behavior changes considerably
between linear and geomorphology based models
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