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Catchments are complex systems 

Kelleher et al. 2013, PhD Dissertation 3 



The goal of modelling efforts is to abstract these complex 
systems to as to enable: 
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Image: http://prometheuswiki.publish.csiro.au/tiki-download_file.php?fileId=157&display (left) 

http://aquadoc.typepad.com/.a/6a00d8341bf80a53ef01a3fcb83941970b-pi (right) 

1. Hypothesis testing 2. Prediction: floods & droughts, climate change 

http://prometheuswiki.publish.csiro.au/tiki-download_file.php?fileId=157&display
http://prometheuswiki.publish.csiro.au/tiki-download_file.php?fileId=157&display
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http://aquadoc.typepad.com/.a/6a00d8341bf80a53ef01a3fcb83941970b-pi
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A goodness-of-fit statistic or objective functions quantifies the distance between 
model output and observations  

5 

MODEL (M) 

State update (Xt) 

  

X
t
 M

f
(, X

t1
, I

t1
)

O
t
 M

g
(, X

t1
, I

t1
)

 
I

t  
O

t

 
Obs

t

 
e

t
Obs

t
O

t

  
Total error  E(,Obs, X

o
)  f (e

1
,e

2
,...,e

t
,...)

Time, t 

St
re

am
fl
o
w

 

  
e

1

  
e

2

  
e

3

 
Obs

t

 
O

t

Common objective functions such as the NSE, RMSE, or percentage bias collapse this information 
into a single value 



Most common objective function lead to un-identifiability of 
one or more model parameters 

Wagener et al. 2003, DYNIA, Hydrological Processes 6 

All simulations yield an RMSE value of 0.60! Only some parameters are identifiable using RMSE. 

Generally, parameters 

that fit the ‘peaks’ well 

are identified by 

squared error metrics. 



Challenges in model structure and parameter identification 
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1. Loss of information of time series errors in a single value. 

2. Squared error metrics tend to focus on fitting the peak flows 

3. No clear guidelines for cutoffs of high versus low performance 

Equifinality of model structures and parameters   



Recent studies suggest a modular approach to model building 

Clark et al., 2015, SUMMA, WRR 8 



Beyond NSE: including hydrologic signatures in model 
assessment 

Shafi and Tolson, 2015, Optimizing hydrological consistency by incorporating 

hydrological signatures into model calibration objectives, WRR 9 

“Pareto dominance based multiobjective optimization yields the 

highest level of consistency among all formulations.” 

Single 

Multiple 



The two flow components can then be modelled separately. 

Pure overland flow (POF)  

Mixed surface-subsurface flow (MSSF)  

Reality 

Image source: http://www.krisweb.com/hydrol/Salmon_River.jpg)  
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Our study: compare model performance for a proposed 
routing structure 

Biswal and Singh, 2017, AWR 
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The geomorphic hydrological response model (GHRM) 
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We create two model structures based on GHRM and 
compare it against a liner reservoir type routing 
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Indicator 1 

Pareto front 
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Multiple indicator 
analysis 

Identifying the behavioral parameter space using multiple 
ecologically relevant indicators 
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Using multiple objectives allows us to obtain envelopes of 
streamflow for each model 

14 Biswal and Singh, 2017, AWR 



We find significant spatial variation in the contribution 
of each model to the Pareto optimal set 
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GHRM 
GHRM-NS 
Watershed 

Note: clusters are delineated for 
groups of 3 or more watersheds 
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NSE performance of the three model structures was 
comparable 

16 Biswal and Singh, 2017, AWR 



A multi-dimensional assessment of model performance 

Biswal and Singh, 2017, AWR 17 

1 Linear 
2 GHRM 
3 GHRM-NS 



Partitioning of flow varies significantly between linear 
routing and geomorphological routing 
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Linear 

GHRM 

Cumulative distribution of split parameter across the Pareto optimal sets shows 
very different behavioral ranges for the linear and geomorphic models. 

Watershed location is shown by a circle 
and color denotes the model with 
maximum contribution to the Pareto 
sets 
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The recession behavior changes considerably 
between linear and geomorphology based models 
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Watershed location is shown by a circle and color 
denotes the model with maximum contribution to 
the Pareto sets 

Simulations for the Pareto optimal set 

with the best NSE value for each model 
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The recession behavior changes considerably 
between linear and geomorphology based models 
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Watershed location is shown by a circle and color 
denotes the model with maximum contribution to 
the Pareto sets 

Simulations for the Pareto optimal set with 
the best NSE value for each model 

Thank you! 
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