How parameter value identification is impacted by the selection of performance criteria – A SWAT study in four contrasting catchments in Germany

Björn Guse1,2, Jens Kiesel3,1, Matthias Pfannerstill1 and Nicola Fohrer1

1CAU Kiel 2GFZ Potsdam 3IGB Berlin
Multiple performance criteria to calibrate multiple model parameters

- Performance criteria are focused on different parts of the hydrograph
- Some parameter values impact different parts of hydrograph
- Selection of performance criteria impact identification of optimal parameter values
Four catchments

- **Treene**
 - Elevation: 80 m asl, 2 m asl
 - Location: Treia

- **Saale**
 - Elevation: 856 m asl, 415 m asl
 - Location: Blankenstein

- **Kinzig**
 - Elevation: 628 m asl, 98 m asl
 - Location: Hanau

- **Ammer**
 - Elevation: 2157 m asl, 547 m asl
 - Location: Peißenberg

Data sources:
- DGM Treene (LVERMA-SH)
- DAV (LAND-SH)
- DIVA-GIS (diva-gis.org)
- River network (UBA)
- SRTM 90 (Jarvis et al., 2008)
- DGM Kinzig (HVBG)
SWAT3S model version

Modified from Guse et al. (2014, HP; 2016, WRR)
Selection of performance criteria

- Multiple and complementary performance criteria to consider different aspects of hydrograph:
 - NSE
 - KGE + its components: KGE_alpha (variability), KGE_beta (bias), KGE_r (correlation)
 - RSR for 5 flow duration curve segments:

![Flow duration curve segments](image)

Pfannestill et al. (2014, JH)
Methodological approach

- Latin-hypercube sampling with identical parameter sets in all catchments
- 2000 model simulations in each catchment (LH\text{Initial})
- Selection 500 best model simulations separately for each performance criteria
- Comparison of parameter value distribution in subsets
- Refinement of parameter ranges based on all performance criteria
- 2000 model simulations with constrained parameter ranges (LH\text{Constrain})
- Comparison of LH\text{Initial} with LH\text{Constrain}
Parameter value identification (LHinitial)

- Analysis how often a parameter value is included in a subset of the best model runs
- Separately for each performance criterion
- Similar to histogram but as continuous coloured line.

Parameter identifiability
- low
- High

Diagram showing parameter identifiability with colors indicating different levels of identifiability.
Parameter value identification (LH_initial) - Treene

- Clear parameter value identification: ALPHA_BFssh, GW_DELAYfssh
- Contrasting results: ESCO (medium vs. low flow)
- Unidentifiable: SFTMP, SURLAG, GDRAIN, LATTIME, SOL_K
Parameter value identification - Ammer

- Clear parameter value identification: SURLAG, LATTIME, RCHRGGssh
- Contrasting results: SOL_K
- Unidentifiable: GDRAIN, ALPHA_BFssh
Parameter constraints (Treene)

- \(X = \) Parameter is not relevant and removed for the next simulations
- Value in \(% = \) Reduction of parameter range

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Treene</th>
<th>%</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTMP</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMTMP</td>
<td>11</td>
<td></td>
<td>(-2.15, 2.28)</td>
</tr>
<tr>
<td>CN2</td>
<td>3</td>
<td></td>
<td>(-14.7, 4.8)</td>
</tr>
<tr>
<td>SURLAG</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATTTIME</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDRAIN</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOL_AWC</td>
<td>42</td>
<td></td>
<td>(0.03, 0.1)</td>
</tr>
<tr>
<td>SOL_K</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCO</td>
<td>0</td>
<td></td>
<td>(0.2, 1)</td>
</tr>
<tr>
<td>GW_DELAYfsh</td>
<td>60</td>
<td></td>
<td>(30.5, 50)</td>
</tr>
<tr>
<td>RCHRGssh</td>
<td>42</td>
<td></td>
<td>(0.45, 0.8)</td>
</tr>
<tr>
<td>ALPHA_BFssh</td>
<td>63</td>
<td></td>
<td>(0.001, 0.075)</td>
</tr>
</tbody>
</table>
Parameter value identification with constrained parameter ranges - Treene

- All parameters are identifiable
- Refinement of parameter ranges removes unrealistic parameter sets
Model performance between LHinitial and LHfinal

- Change in median values between LHinitial and LHfinal for selected performance criteria

![Graph showing model performance criteria](image)
Coverage of parameter space

- Euclidean distance between all parameter combinations
- Calculation of the minimum distance for each parameter set
- Presentation as boxplots

Reduction of parameter ranges leads to better coverage of parameter space compared to a larger number of model runs
Conclusion

• Parameter value identification benefit from using multiple performance criteria
• Contradictory results indicate that a parameter is required to reproduce different parts of the hydrograph accurately
• Refinement of parameter space improves model performance and leads to higher number of good model simulations
• It is more useful to reduce the parameter ranges as much as hydrologically meaningful instead of increasing the number of model simulations
• Unidentifiable parameters did not impact the chosen performance criteria (based on the hydrograph) but may be relevant for other processes

Thank you for your attention
References for further information

