High-End Climate Change for Specific Warming Levels and Their Implications in the Ganga River Basin

Ashvani K. Gosain
Professor, Indian Institute of Technology Delhi
gosain@civil.iitd.ac.in
Objectives

• What do 4ºC and 6ºC worlds look like in comparison to 1.5ºC and 2ºC
• What are the associated Uncertainties
• What are the plausible Adaptation options
Contributions

• INRM team lead by Dr Sandhya Rao
• This work was done under The High-End Climate Impacts and eXtremes (HELIX), a European Union Collaborative project
Climate Change Scenario Used

- Scenario: IPCC SRES AR5 RCP 8.5
- South Asia Cordex Models for simulated weather data
 - Bias corrected 3 RCMs (11 model runs)
 - CSIRO-CCAM-1391M – (4)
 - MPI-CSC-REMO2009 – (1)
 - SMHI-RCA4 – (6)
- Model Boundary Conditions
 - 9 boundary conditions
- 3 Specific Warming Levels (SWL)
 - SWL:1.5°C
 - SWL:2°C
 - SWL:4°C
- Grid resolution of 0.5° x 0.5°.
Climate Change and its Impact on Water Resources of Ganga Basin

- **Tools used**
 - Modelling: SWAT (Soil and Water Assessment Tool)
 - GIS framework: acts as a pre-processor

- **Data used**
 - Digital Elevation Model: SRTM 90 m
 - Land use: Global data, 1:2M USGS
 - Soil: Global data, 1:5M FAO
 - Drainage: 1:250,000
 - Weather: IPCC AR5 RCP 8.5 scenario, CORDEX Bias Corrected at 0.5°X0.5° resolution from HELIX
 - Existing man made interventions (dams/reservoirs)
 - Current Crop management practices

- **Impacts Studied**
 - Impact on annual water availability
 - Impact on seasonal water availability
 - Impact on inter annual water availability
 - Regional Variability of Water availability
 - Extreme events – Floods and Droughts
Input Data used for Hydrological Modelling

- Digital Elevation Model
- Landuse Layer
- Soil Layer
- Water resources structures implemented
- Sub watershed delineated
- RCM weather grids
Specific Warming Levels, their respective Passing Time and average CO_2 levels

<table>
<thead>
<tr>
<th>CORDEX Models</th>
<th>Driving GCM</th>
<th>SWL:1.5</th>
<th>SWL:2</th>
<th>SWL:4</th>
<th>SWL:6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS1-0_CSIRO-CCAM-1391M</td>
<td>ACCESS1-0</td>
<td>2034</td>
<td>2046</td>
<td>2085</td>
<td></td>
</tr>
<tr>
<td>CCSM4_CSIRO-CCAM-1391M</td>
<td>CCSM4</td>
<td>2016</td>
<td>2031</td>
<td>2079</td>
<td>2128</td>
</tr>
<tr>
<td>CNRM-CERFACS-CNRM-CM5_SMHI-RCA4</td>
<td>CNRM-CM5</td>
<td>2032</td>
<td>2046</td>
<td>2088</td>
<td>2132</td>
</tr>
<tr>
<td>CNRM-CM5_CSIRO-CCAM-1391M</td>
<td>CNRM-CM5</td>
<td>2032</td>
<td>2046</td>
<td>2088</td>
<td>2132</td>
</tr>
<tr>
<td>ICHEC-EC-EARTH_SMHI-RCA4</td>
<td>EC-EARTH</td>
<td>2019</td>
<td>2035</td>
<td>2083</td>
<td></td>
</tr>
<tr>
<td>MIROC-MIROC5_SMHI-RCA4</td>
<td>MIROC-MIROC5</td>
<td>2038</td>
<td>2052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI-ESM-LR_CSIRO-CCAM-1391M</td>
<td>MPI-ESM-LR</td>
<td>2021</td>
<td>2040</td>
<td>2083</td>
<td>2123</td>
</tr>
<tr>
<td>MPI-M-MPI-ESM-LR_MPI-CSC-REMO2009</td>
<td>MPI-ESM-LR</td>
<td>2021</td>
<td>2040</td>
<td>2083</td>
<td>2123</td>
</tr>
<tr>
<td>MPI-M-MPI-ESM-LR_SMHI-RCA4</td>
<td>MPI-ESM-LR</td>
<td>2021</td>
<td>2040</td>
<td>2083</td>
<td>2123</td>
</tr>
<tr>
<td>NOAA-GFDL-GFDL-ESM2M_SMHI-RCA4</td>
<td>GFDL-ESM2M</td>
<td>2040</td>
<td>2055</td>
<td>2113</td>
<td>2186</td>
</tr>
<tr>
<td>GFDL-CM3_r1_CSIRO-CCAM-1391M</td>
<td>GFDL-CM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWL Passing Year</th>
<th>30 years To_From around SWL</th>
<th>Average CO2 levels (From global) - RCP8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWL:1.5</td>
<td>2019 to 2049</td>
<td>CO2_SWL15: 467.45</td>
</tr>
<tr>
<td></td>
<td>2021 to 2051</td>
<td>CO2_SWL2: 407.02</td>
</tr>
<tr>
<td></td>
<td>2023 to 2053</td>
<td>CO2_SWL4: 459.48</td>
</tr>
<tr>
<td></td>
<td>2025 to 2055</td>
<td>CO2_SWL6: 415.47</td>
</tr>
<tr>
<td>SWL:2</td>
<td>2019 to 2049</td>
<td>523.26</td>
</tr>
<tr>
<td></td>
<td>2021 to 2051</td>
<td>455.62</td>
</tr>
<tr>
<td></td>
<td>2023 to 2053</td>
<td>523.26</td>
</tr>
<tr>
<td></td>
<td>2025 to 2055</td>
<td>471.57</td>
</tr>
<tr>
<td>SWL:4</td>
<td>2019 to 2049</td>
<td>802.94</td>
</tr>
<tr>
<td></td>
<td>2021 to 2051</td>
<td>752.15</td>
</tr>
<tr>
<td></td>
<td>2023 to 2053</td>
<td>829.02</td>
</tr>
<tr>
<td></td>
<td>2025 to 2055</td>
<td>785.79</td>
</tr>
<tr>
<td>SWL:6</td>
<td>2019 to 2049</td>
<td>1206.31</td>
</tr>
<tr>
<td></td>
<td>2021 to 2051</td>
<td>1246.25</td>
</tr>
<tr>
<td></td>
<td>2023 to 2053</td>
<td>1246.25</td>
</tr>
<tr>
<td></td>
<td>2025 to 2055</td>
<td>785.79</td>
</tr>
</tbody>
</table>

Average CO2 levels (From global) - RCP8.5

<table>
<thead>
<tr>
<th>CO2_SWL15</th>
<th>CO2_SWL2</th>
<th>CO2_SWL4</th>
<th>CO2_SWL6</th>
</tr>
</thead>
<tbody>
<tr>
<td>467.45</td>
<td>523.26</td>
<td>802.94</td>
<td>1206.31</td>
</tr>
<tr>
<td>407.02</td>
<td>455.62</td>
<td>752.15</td>
<td>1246.25</td>
</tr>
<tr>
<td>459.48</td>
<td>523.26</td>
<td>829.02</td>
<td>1246.25</td>
</tr>
<tr>
<td>415.47</td>
<td>471.57</td>
<td>785.79</td>
<td></td>
</tr>
<tr>
<td>418.41</td>
<td>467.45</td>
<td>672.53</td>
<td></td>
</tr>
<tr>
<td>484.48</td>
<td>556.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>421.42</td>
<td>493.57</td>
<td>785.79</td>
<td>1156.88</td>
</tr>
<tr>
<td>421.42</td>
<td>493.57</td>
<td>785.79</td>
<td>1156.88</td>
</tr>
<tr>
<td>493.57</td>
<td>575.15</td>
<td>1059.71</td>
<td>1738.75</td>
</tr>
</tbody>
</table>
Model Agreement in Projected Maximum, Minimum and Precipitation

- 11 CORDEX RCMs
Annual Precipitation for Ganga Basin at Specific Warming Levels (1.5°C, 2°C, 4°C) using Cordex South Asia RCM outputs - RCP8.5 Scenario*

*Source: Bias adjusted Cordex South Asia daily weather datasets provided by Technical University of Crete, Greece
SWAT Simulated Annual Water Yield for Ganga Basin at Specific Warming Levels (1.5°C, 2°C, 4°C) using Cordex South Asia RCM outputs - RCP8.5 Scenario*

Specific Warming Level: 1.5°C
- RCA4 (CNRM-CMS)
- RCA4 (ICHOR-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-M-MRO-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-MEM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CMS)

Specific Warming Level: 2°C
- RCA4 (CNRM-CMS)
- RCA4 (ICHOR-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-M-MRO-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-MEM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CMS)

Specific Warming Level: 4°C
- RCA4 (CNRM-CMS)
- RCA4 (ICHOR-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-M-MRO-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-MEM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CMS)

Water Yield (mm)

<table>
<thead>
<tr>
<th>Driving GCM</th>
<th>CORDEX Models</th>
<th>SWL 1.5°C</th>
<th>SWL 2°C</th>
<th>SWL 4°C</th>
<th>30 years Simulation around SWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CNRM-CMS, CNRM-CHECM, CNRM-CM5, CNRM-CM5-MR</td>
<td>2022</td>
<td>2023</td>
<td>2025</td>
<td>2022-2023</td>
</tr>
<tr>
<td>2</td>
<td>ACCESS1-0</td>
<td>2023</td>
<td>2024</td>
<td>2025</td>
<td>2023-2024</td>
</tr>
<tr>
<td>3</td>
<td>ACCESS1-0</td>
<td>2024</td>
<td>2025</td>
<td>2026</td>
<td>2024-2025</td>
</tr>
<tr>
<td>4</td>
<td>ACCESS1-0</td>
<td>2025</td>
<td>2026</td>
<td>2027</td>
<td>2025-2026</td>
</tr>
<tr>
<td>5</td>
<td>ACCESS1-0</td>
<td>2026</td>
<td>2027</td>
<td>2028</td>
<td>2026-2027</td>
</tr>
<tr>
<td>6</td>
<td>ACCESS1-0</td>
<td>2027</td>
<td>2028</td>
<td>2029</td>
<td>2027-2028</td>
</tr>
<tr>
<td>7</td>
<td>ACCESS1-0</td>
<td>2028</td>
<td>2029</td>
<td>2030</td>
<td>2028-2029</td>
</tr>
<tr>
<td>8</td>
<td>ACCESS1-0</td>
<td>2029</td>
<td>2030</td>
<td>2031</td>
<td>2029-2030</td>
</tr>
<tr>
<td>9</td>
<td>ACCESS1-0</td>
<td>2030</td>
<td>2031</td>
<td>2032</td>
<td>2030-2031</td>
</tr>
<tr>
<td>10</td>
<td>ACCESS1-0</td>
<td>2031</td>
<td>2032</td>
<td>2033</td>
<td>2031-2032</td>
</tr>
<tr>
<td>11</td>
<td>ACCESS1-0</td>
<td>2032</td>
<td>2033</td>
<td>2034</td>
<td>2032-2033</td>
</tr>
<tr>
<td>12</td>
<td>ACCESS1-0</td>
<td>2033</td>
<td>2034</td>
<td>2035</td>
<td>2033-2034</td>
</tr>
<tr>
<td>13</td>
<td>ACCESS1-0</td>
<td>2034</td>
<td>2035</td>
<td>2036</td>
<td>2034-2035</td>
</tr>
<tr>
<td>14</td>
<td>ACCESS1-0</td>
<td>2035</td>
<td>2036</td>
<td>2037</td>
<td>2035-2036</td>
</tr>
<tr>
<td>15</td>
<td>ACCESS1-0</td>
<td>2036</td>
<td>2037</td>
<td>2038</td>
<td>2036-2037</td>
</tr>
<tr>
<td>16</td>
<td>ACCESS1-0</td>
<td>2037</td>
<td>2038</td>
<td>2039</td>
<td>2037-2038</td>
</tr>
<tr>
<td>17</td>
<td>ACCESS1-0</td>
<td>2038</td>
<td>2039</td>
<td>2040</td>
<td>2038-2039</td>
</tr>
<tr>
<td>18</td>
<td>ACCESS1-0</td>
<td>2039</td>
<td>2040</td>
<td>2041</td>
<td>2039-2040</td>
</tr>
<tr>
<td>19</td>
<td>ACCESS1-0</td>
<td>2040</td>
<td>2041</td>
<td>2042</td>
<td>2040-2041</td>
</tr>
<tr>
<td>20</td>
<td>ACCESS1-0</td>
<td>2041</td>
<td>2042</td>
<td>2043</td>
<td>2041-2042</td>
</tr>
<tr>
<td>21</td>
<td>ACCESS1-0</td>
<td>2042</td>
<td>2043</td>
<td>2044</td>
<td>2042-2043</td>
</tr>
<tr>
<td>22</td>
<td>ACCESS1-0</td>
<td>2043</td>
<td>2044</td>
<td>2045</td>
<td>2043-2044</td>
</tr>
<tr>
<td>23</td>
<td>ACCESS1-0</td>
<td>2044</td>
<td>2045</td>
<td>2046</td>
<td>2044-2045</td>
</tr>
<tr>
<td>24</td>
<td>ACCESS1-0</td>
<td>2045</td>
<td>2046</td>
<td>2047</td>
<td>2045-2046</td>
</tr>
<tr>
<td>25</td>
<td>ACCESS1-0</td>
<td>2046</td>
<td>2047</td>
<td>2048</td>
<td>2046-2047</td>
</tr>
<tr>
<td>26</td>
<td>ACCESS1-0</td>
<td>2047</td>
<td>2048</td>
<td>2049</td>
<td>2047-2048</td>
</tr>
<tr>
<td>27</td>
<td>ACCESS1-0</td>
<td>2048</td>
<td>2049</td>
<td>2050</td>
<td>2048-2049</td>
</tr>
<tr>
<td>28</td>
<td>ACCESS1-0</td>
<td>2049</td>
<td>2050</td>
<td>2051</td>
<td>2049-2050</td>
</tr>
<tr>
<td>29</td>
<td>ACCESS1-0</td>
<td>2050</td>
<td>2051</td>
<td>2052</td>
<td>2050-2051</td>
</tr>
<tr>
<td>30</td>
<td>ACCESS1-0</td>
<td>2051</td>
<td>2052</td>
<td>2053</td>
<td>2051-2052</td>
</tr>
</tbody>
</table>

Source: Bias adjusted Cordex South Asia daily weather datasets provided by Technical University of Crete, Greece
SWAT Simulated Annual Evapotranspiration for Ganga Basin at Specific Warming Levels (1.5°C, 2°C, 4°C) using Cordex South Asia RCM outputs - RCP8.5 Scenario

Specific Warming Level: 1.5°C
- RCA4 (CNRM-CMS)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CMS-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-M-MPI-ESM-LR)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CMS)
- CCAM 1391 (MPI-ESM-LR)

Specific Warming Level: 2°C
- RCA4 (CNRM-CMS)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CMS-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-M-MPI-ESM-LR)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CMS)
- CCAM 1391 (MPI-ESM-LR)

Specific Warming Level: 4°C
- RCA4 (CNRM-CMS)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CMS-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-M-MPI-ESM-LR)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CMS)
- CCAM 1391 (MPI-ESM-LR)

Evapotranspiration (mm)

<table>
<thead>
<tr>
<th>Driving GCM</th>
<th>CORDEX Models</th>
<th>SWL 1.5°C</th>
<th>SWL 2°C</th>
<th>SWL 4°C</th>
<th>30 Years Simulation around SWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC-EARTH</td>
<td>ICHEC-EC-EARTH_SSIMS_R6</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2012-2018</td>
</tr>
<tr>
<td>MIROC-MIROCS</td>
<td>MIROC-ESM_CMIP5_SSIMS_R6</td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
<td>2012-2018</td>
</tr>
</tbody>
</table>

*Source: Bias adjusted Cordex South Asia daily weather datasets provided by Technical University of Crete, Greece
Monsoon Drought Weeks Based on Agriculture Drought Index at Specific Warming Levels (1.5°C, 2°C, 4°C), using Cordex South Asia RCM outputs - RCP8.5 Scenario

Specific Warming Level : 1.5 °C

- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROC5)
- RCA4 (MPI-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)
- CCAM 1391 (CCSM4)

Specific Warming Level : 2 °C

- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROC5)
- RCA4 (MPI-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)
- CCAM 1391 (CCSM4)

Specific Warming Level : 4 °C

- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROC5)
- RCA4 (MPI-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)
- CCAM 1391 (CCSM4)

Number of Monsoon Drought Weeks

- < 2
- 3 - 4
- 5 - 6
- 7 - 8
- 8 - 16

Source: Bias adjusted Cordex South Asia daily weather datasets provided by Technical University of Crete, Greece
Monsoon Drought Weeks Based on Agriculture Drought Index ranging from -2 to -4 (moderate to extreme soil moisture stress during critical growth stages of crops) at Specific Warming Levels (1.5°C, 2°C, 4°C), using Cordex South Asia RCM outputs - RCP 8.5 Scenario

Specific Warming Level: 1.5°C
- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROC5)
- RCA4 (MPI-M-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)

Specific Warming Level: 2°C
- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROC5)
- RCA4 (MPI-M-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)

Specific Warming Level: 4°C
- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROC5)
- RCA4 (MPI-M-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)

Number of Monsoon Drought Weeks

*Source: Bias adjusted Cordex South Asia daily weather datasets provided by Technical University of Crete, Greece
SWAT Simulated Annual Maximum Flow Based on Daily Stream Flow at Specific Warming Levels (1.5°C, 2°C, 4°C), using Cordex South Asia RCM outputs - RCP8.5 Scenario

Specific Warming Level: 1.5°C
- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)

Specific Warming Level: 2°C
- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)

Specific Warming Level: 4°C
- RCA4 (CNRM-CM5)
- RCA4 (ICHEC-EC-EARTH)
- RCA4 (IPSL-CM5-MR)
- RCA4 (MIROC-MIROCS)
- RCA4 (MPI-MPI-ESM-LR)
- RCA4 (NOAA-GFDL-ESM2M)
- REMO 2009 (MPI-ESM-LR)
- CCAM 1391 (ACCESS)
- CCAM 1391 (CCSM4)
- CCAM 1391 (CNRM-CM5)
- CCAM 1391 (MPI-ESM-LR)

Maximum Discharge (CMS)

*Source: Bias adjusted Cordex South Asia daily weather datasets provided by Technical University of Crete, Greece
Spatial Representation of SEVI- Rank, Cluster
Key Inferences

- At annual level precipitation, water yield and evapotranspiration, extreme events ranges for 11 models

<table>
<thead>
<tr>
<th></th>
<th>Precipitation (mm)</th>
<th>Water Yield (mm)</th>
<th>Evapotranspiration (mm)</th>
<th>Drought (weeks)</th>
<th>Flood Magnitude (cumecs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>1089 - 1189</td>
<td>388 - 473</td>
<td>554 - 569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWL15</td>
<td>1089 - 1330</td>
<td>388 - 567</td>
<td>554 - 592</td>
<td>3.6 - 5.3</td>
<td>176900 – 510400</td>
</tr>
<tr>
<td>SWL2</td>
<td>1083 - 1376</td>
<td>388 - 592</td>
<td>552 - 597</td>
<td>3.4 - 4.9</td>
<td>195500 - 533700</td>
</tr>
<tr>
<td>SWL4</td>
<td>959 – 1490</td>
<td>361 - 653</td>
<td>498 – 599</td>
<td>1.3 – 4.5</td>
<td>242800 – 525500</td>
</tr>
</tbody>
</table>

- ACCESS1-0_CSIRO-CCAM-1391M (highest), MPI-M-MPI-ESM-LR_MPI-CSC-REMO2009 (lowest)
Dissemination Tool Developed

- http://inrm.co.in/climatechange/helix/homepage.html
Thank You