# SWAT Soil & Water Assessment Tool

# Linking field and watershed processes in SWAT+ for the next CEAP national cropland assessment

J.G. Arnold, K. Bieger, M.J. White, R. Srinivasan, and P.M. Allen



# Outline

- Modular Code
- Object Connections
- File Input/Output Relational Structure
- Calibration File
- 3 Tier Approach
- Decision Table for Management
- Use in USDA National Conservation Assessment (CEAP)



- FORTRAN continue as language of choice for scientists/engineers.
- MODULAR Extensive use of data structures and modules. Easier to maintain, link to other models, and add process subroutines.
- **RECODING** Spatial objects with new input/output data structure is complete. Continue recoding process subroutines and modules.
- VERSION CONTROL Bit Bucket
- FACILITATE maintenance of code and input files, linkage of SWAT and other models, addition of new process subroutines



 HRUs, aquifers, channels, reservoirs, etc. are separate spatial objects → flexible spatial representation of interactions and processes within a watershed using "connect" files





## SWAT+ Input files

| SWAT Soil & Water<br>Assessment Tool                                | SOIL & WATER ASSESSMENT TOOL                                                          | Advantages of SWAT+                                                                                                                |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>One file for each data<br/>type for each object</li> </ul> | <ul> <li>One file for each data<br/>type with one line for<br/>each object</li> </ul> | <ul> <li>Reduced number of input files</li> <li>Decrease in run time</li> <li>Data files can be maintained as databases</li> </ul> |

## SWAT+ Output files

| SWAT Soil & Water<br>Assessment Tool                                                                    | SOIL & WATER ASSESSMENT TOOL                                                                                      | Advantages of SWAT+                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>One file for each object</li> <li>Select variables</li> <li>Select output time step</li> </ul> | <ul> <li>Splits hru output into<br/>water balance, nutrient<br/>balance, losses, and<br/>plant/weather</li> </ul> | <ul> <li>Basin, subbasin, and<br/>hru files are identical</li> <li>Output multiple time<br/>steps in same run</li> <li>All output files are<br/>spreadsheet ready</li> </ul> |

#### **Relational Land Use Data**



Field

# Calibration

| SWAT Soil & Water<br>Assessment Tool                                                      | SOIL & WATER ASSESSMENT TOOL                                                                                              | Advantages of SWAT+                                                                                                                                                     |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Changes of parameter<br/>values made in the<br/>original data file(s)</li> </ul> | <ul> <li>Changes of parameter<br/>values listed in cali-<br/>bration file that over-<br/>rides original values</li> </ul> | <ul> <li>Rapid model calibration</li> <li>Better tracking of<br/>modified parameters</li> <li>Conditional changes<br/>based on land use and<br/>soil texture</li> </ul> |

| Variable | <u>Change_Type</u>                               | Change | HRU's  |
|----------|--------------------------------------------------|--------|--------|
| CN2      | ABS_VAL                                          | -4     | 1-2000 |
|          | <u>ditions</u><br>Land Use = 'Fores<br>HSG = 'A' | st'    |        |



### 3 Tier Approach

Tier 3: HRU – Full carbon, nutrient and constituent simulation. Comprehensive management.

Tier 2: HRU-LTE – Water balance and plant growth. Computationally efficient with minimal input. Currently developing a simple nutrient component.

Tier 1: Export coefficients and delivery ratios -Average annual loads and deliveries through channels and reservoirs. Commonly used in optimizing location of conservation practices.

All Tiers are modules in SWAT+, use the same connect files, and can be utilized in the same simulation.

## **Decision Tables**

Precise, compact way to model complex rule sets and their corresponding actions

| CONDITIONS                                                                                                                           | ALTERNATIVES                                     | <u>Conditional Variables</u>                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTIONS                                                                                                                              | ACTION ENTRIES                                   | soil_water soil_p<br>w_stress n_applied<br>month biomass                                                                                                                       |
| Actions<br>irrigate<br>release<br>fertilize<br>plant<br>harvest<br>tillage<br>fire<br>grow_init<br>grow_end<br>drainage<br>lu change | Alternatives<br>< > =<br>Action Entrie<br>yes no | jday cover<br>hu_plant lai<br>hu_base0 vol<br>year_rot flow<br>year_cal lat<br>year_seq long<br>prob elev<br>land_use day_len<br>ch_use plant<br>n_stress plant_type<br>soil_n |

## Advantages of Decision tables

- The structure of a decision table can be easily understood by model users. Decision tables were developed over 50 years ago, and there is considerable literature and tutorials available on-line related to developing decision tables.
- 2. Decision tables more accurately represent complex, real world decision making.
- 3. The code is more modular and easier to maintain than code to simulate management in existing land management models.
- 4. The code to implement decision tables is more efficient than languages developed for specific river and reservoir models.
- 5. Decision tables can be easily maintained and supported.

### CEAP II National Cropland Assessment (SWAT+ Input File Structure)

#### Downscaling from 8-digit subwatersheds (3,500 km<sup>2</sup>) to 12-digits (75 km<sup>2</sup>)



### **CEAP II National Cropland Assessment**

- Use individual rain gages
- Model channel processes on lower order streams
- Model channel erosion and valley bottom deposition within the 12-digits

Example: 8-digit vs. 12-digit Subwatershed Configurations for the Raccoon River Watershed in West Central Iowa



## CEAP II National Cropland Assessment

- Elimination of 8-digit Delivery Ratio
- Simulate processes from edge-of-field to 12-digit outlet.
- Channel (gully/ditch) leaving field, each first order channel, higher orders, and main routing channel





## CEAP II National Cropland Assessment Detailed output of budgets within the 8-digit including Sankey diagram from Trimble.





- Dynamic Land Use Updates and Scenario Analysis Using decision tables
- Soft Calibration Water, Sediment and Nutrient budgets
- Real Time Simulation 10 km<sup>2</sup> grid of the U.S. using NEXRAD inputs to current day. Short term projecting future with weather forecasts
- QGIS and SWAT+CUP release this year

# Thank you for your attention!

jeff.arnold@ars.usda.gov kbieger@brc.tamus.edu

## **CEAP II National Cropland Assessment**

Simulation of "non-classical" hydrography. Playa lakes, non-draining lakes, no hydrography, all wetland, etc.



### **CEAP II National Cropland Assessment**

New SWAT+ structure will allow simulation of legacy sediment and nutrients.



## New Processes in SWAT+

#### Channel Downcutting and Widening Gully Headcut

#### Flood Plain – Overbank





K. MICHAELIDES AND J. WAINWRIGHT



Channel belt

b.





Simulation of "non-classical" hydrography. Playa lakes, non-draining lakes, no hydrography, all wetland, etc











## Simulating Constituents Pesticides, Pathogens, Metals and Salts

| SWAT Soil & Water<br>Assessment Tool                                                                                                | SOIL & WATER ASSESSMENT TOOL                                                                                                                 | Advantages of SWAT+                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Limited number of constituents that can be simulated and routed at the same time</li> <li>No simulation of salt</li> </ul> | <ul> <li>Definition of suites of constituents that will be simulated for each object</li> <li>Simulation of salt as a constituent</li> </ul> | <ul> <li>More comprehensive simulation of constituents</li> <li>Routing of more than one pesticide at the same time</li> </ul> |

# Watershed configuration



SWAT Architecture and Basin Erosion-Nutrient Framework



# Watershed configuration

| SWAT Soil & Water<br>Assessment Tool                                                                                          | SOIL & WATER ASSESSMENT TOOL                                                                                                                                                            | Advantages of SWAT+                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Subdivision of<br/>subbasins into HRUs</li> <li>Water areas defined as<br/>HRUs</li> </ul>                           | <ul> <li>Separation of water<br/>and land areas within<br/>subbasins</li> <li>Water areas defined as<br/>ponds/ reservoirs</li> <li>Definition of LSUs to<br/>aggregate HRUs</li> </ul> | <ul> <li>More realistic<br/>simulation of water<br/>areas</li> <li>Improved simulation of<br/>landscape position,<br/>overland routing, and<br/>floodplain processes</li> </ul> |
| <ul> <li>HRUs represented by<br/>their entire area within<br/>a LSU during calculation<br/>of land phase processes</li> </ul> | <ul> <li>HRUs represented by a contiguous field with user-defined dimensions, actual HRU area used as expansion factor</li> </ul>                                                       | <ul> <li>Calculation of land<br/>phase processes<br/>independent of HRU<br/>area</li> </ul>                                                                                     |

# Printing output

| SWAT Soil & Water<br>Assessment Tool                       | SWAT Soil & Water<br>Assessment Tool                             |                                                                               |
|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|
| All output printed at simulation time step                 | User-defined time step for<br>printing output for each<br>object | Printing of output according to needs of user                                 |
| Varying layout of output files                             | Standardized layout of output files in database format           | Easy loading and editing in any text editor, spread-sheet or database program |
| Specification of additional print commands in fig.fig file | Specification of additional print commands in separate file      | Easier printing of user-<br>defined output files                              |

# Aquifers and reservoirs

| SWAT Soil & Water<br>Assessment Tool                                                     | SWAT+                                                                         | Advantages of SWAT+                                                                                                         |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Aquifers tied to HRUs</li> <li>Definition of one<br/>aquifer per HRU</li> </ul> | Aquifers independent     from HRUs                                            | <ul> <li>Any number of aquifers<br/>can be defined</li> <li>Facilitation of SWAT-<br/>MODFLOW linkage</li> </ul>            |
| <ul> <li>Placement of reservoirs<br/>on main channel at<br/>subbasin outlet</li> </ul>   | <ul> <li>Placement of reservoirs<br/>anywhere in the<br/>watershed</li> </ul> | <ul> <li>More realistic<br/>representation of<br/>reservoir position and<br/>interactions with the<br/>landscape</li> </ul> |

## Land cover and management



# Spatial connections

