Technical-economic analysis of Best Management Practices for appropriate control of sediment yield

Slim Mtibaa (Ph.D. candidate)

University of Tsukuba, Japan

Content

- Introduction
- Conceptual framework of the research
- Research objectives
- Study site
- Research methods
- Results
- Conclusion and outlook

Dams are constructed for various reasons:

- Water supply for irrigation and drinking
- Flood control
- Store water for use during drought season

Evolution of planned and available storage capacities of reservoirs in Tunisia

Reservoirs in Tunisia

Soil erosion : one of the main hazards affecting the agricultural productivity and the sustainable use of surface water resources.

IMPACTS

AGRICULTURAL : reduction of soil fertility and crop productivity,

ENVIRONMENTAL : Increase of flooding risk

SOCIO-ECONOMIC : Food scarcity and poverty

SUSTAINABILITY OF WATER RESSOURCES :

Sedimentation in water reservoirs

→ Loss of reservoir storage capacity

4

CONCEPTUEL FRAMEWORK OF THE RESEARCH

OBJECTIVES

Research Objectives

 Assessing the effectiveness of different BMPs scenarios using an integrated Environmental and Socio-Economic approach.
 Selecting the most appropriate scenario to be applied for sustainable agriculture and water resources.

Appropriate strategy for water and soil conservation

Sustainable use of water resources

STUDY SITE

CALIBRATION OF DISCHARGE AND SEDIMENT

Running the model: Period: 1988-2012 (3 years as warmup period)

Simulation of BMPs effectiveness : according to conservation practices guide

Individual BMPs	Parameters	Specific Module
Contour ridges (CR)	POT_FR, POT_VOLX, CONT_CN-P	.HRU
Buffer strips (BS)	VFSRATIO and VFSCON FILTERW	.OPS and .MGT1
No till with R.Mgt (0.5 t/ha) (NoTill/RM)	CN2 ; USLE_P ; OV_N	.MGT1 and .HRU
Strip cropping (SC)	STRIP_CN, STRIP_C and STRIP_P	.OPS
Land use conversion (LUC)	USLE_C, Plant ID	.LUP

Targeted area	Combined BMPs					
Targeled area	1	2	3	4	5	
CSA 5% <slope<10%< td=""><td>NoTill/RM</td><td>SC</td><td></td><td>NoTill/RM</td><td>SC</td></slope<10%<>	NoTill/RM	SC		NoTill/RM	SC	
CSA 10% <slope<20%< td=""><td>CR</td><td>CR</td><td>NoTill/RM</td><td>CR</td><td>CR</td></slope<20%<>	CR	CR	NoTill/RM	CR	CR	
CSA slope > 20%	-	-		-	-	
Slope > 20%	LUC	LUC	-	LUC	LUC	
Along the main channel	-	-	20m BS	5m BS	5m BS	

Assessing the effectiveness of BMPs:

Comparing the average sediment yield at the outlet of the basin before and after introducing the BMP

COST BENEFIT ANALYSIS OF BMPs SCENARIOS

Compare the **cost** and **benefit** of the project (BMPs) during the

expected lifetime of the project (20 years).

COSTS	BENEFITS
 Construction costs Maintenance costs. Opportunity costs : Expected gain from the lands lost for implementing BMPs 	 Increase in productivity Decrease the sedimentation → More water for use. Decrease the nutrients loss → Opportunity cost

Calculate the different economic index to judge the project:

- **NPV:** Net present value : Total net benefits at the end of the project
- B/C: Benefit Cost ratio : Benefits / Costs

SIMULATION OF DISCHARGE

Step	Period	R ²	NSE
Calibration	1991-2003	88%	87%
Validation	2004-2012	88%	86%

SIMULATION OF DISCHARGE

Water balance in Joumine river basin

15

SEDIMENT YIELD ASSESSMENT

Simulated and observed sediment at the outlet of Joumine river after calibration

Overestimation: during low rainfall events

- Underestimation: during intense rainfall events
- Sediment loads : Bathymetry vs SWAT model = +3%

SEDIMENT YIELD ASSESSMENT

Spatial distribution of sediment yield in Joumine river basin

Area with high to very high erosion risk

Land use	Area % basin	% Sediment Y
Cropland	34.266	70.8
Others	6.331	10.08
Total	40.59	80.88

BMPs should be introduced in the **critical sediment source areas** CSAs.

 \rightarrow 34.26% of the basin area

BMPs EFFECTIVENESS

Effectiveness of BMPs scenarios to reduce sediment yield at Joumine river basin

> The most effective individual BMP is contour ridges.

Combined BMPs scenarios were more effective to reduce sediment than individual BMPs

BMPs MODELING IN SWAT NODEL

COST-BENEFIT ANALYSIS OF BMPS SCENARIOS

BMP cost at farm-scale

		Effecti	Act cost (TND/ha/year)			
BMP	Slope	veness (%)	Construction	Maintenance	Opportunity	Total
LUC	20% - 30%	71.1	70.00	16.00	0.00	86.00
	20% - 30%	73.38	40.01	13.72	106.52	160.26
CR	10% – 20%	80.99	39.92	13.04	69.97	122.94
	5% - 10%	87.92	35.76	12.28	43.36	91.41
NoTill/RM	5% – 30%	42.46	12.50	0.00	17.02	29.52
5 m BS	0% - 5%	59.00	3.50	2.66	12.74	18.90
20 m BS	0% – 5%	89.00	14.00	10.66	50.96	75.63
SC	5% - 10%	54.4	6.59	3.74	23.35	33.68

COST-BENEFIT ANALYSIS OF BMPS SCENARIOS

Economic indicators for the different BMPs scenarios

Economic Indicators	Contour ridges	Combined 1	Combined 2	Combined 3	Combined 4	Combined 5
Sediment yield reduction (%)	59.09	52.23	52.91	50.3	60.93	61.84
Cost act millions TND/year	. 1.72	1.25	1.26	0.54	1.28	1.30
Benefit act millions TND/year	. 2.07	1.91	2.09	0.70	1.92	2.09
NPV (millions TND)	7.07	13.3	16.50	3.16	12.61	15.81
B/C ratio	1.21	1.53	1.65	1.29	1.49	1.61

The cost of contour ridges scenario is the highest

- The cost of combined 2 scenario (NoTill / residue management + 20-m BS) is the lowest. However B/C is only 1.29 and it was not acceptable by local farmers because of increasing the crop production cost.
- Combined scenario 5 is the most appropriate in term of cost effectiveness, water quality benefits and sediment yield reduction
 ²¹

COST-BENEFIT ANALYSIS OF BMPS SCENARIOS

Cost of sediment removal (TND/m³)

BMPs scenarios were more cost effective to reduce sediment loads in the downstream river (Joumine river)

 \rightarrow Implementing BMPs scenarios \rightarrow **Delay** the dredging operations

CONCLUSION & OUTLOOK

SWAT model showed that :

- Contour ridges is the most effective individual BMPs
- 34% of the watershed were identified as CSA and need implementing BMPs
- Structural practices (contour ridges) were found more effective than agronomic practices (no till, residue management).
- Combined BMPs are more effective to reduce sediment than individual BMPs
- Combined scenarios were found to be more cost-effective than contour ridges scenario
- Combining CR, SC and LUC BMPs depending on field slope with 5-m BS seems to be the most cost-effective scenario.
- BMPs scenario are **more** cost-effective to reduce sediment than dredging

Result of this study should be treated carefully because of the different assumptions considered during the modeling and economic assessments.

 \Rightarrow In-field experiments would be required to validate the simulated results.

CONCLUSION & OUTLOOK

