EVALUATING IMPACTS OF ALTERNATIVE ADAPTATION STRATEGIES ON THE DYNAMICS OF HUMAN-WATER SYSTEMS

A METHODOLOGICAL FRAMEWORK FOR AN INTEGRATED MODULAR SWAT AND MULTI-ATTRIBUTE REVEALED PREFERENCE MODEL

> Arthur H. Essenfelder and C. Dionisio Pérez-Blanco Centro Euro-Mediterraneo sui Cambiamenti Climatici – CMCC

2017 INTERNATIONAL SWAT CONFERENCE

28 - 30 JUNE 2017, WARSAW, POLAND

INTRODUCTION

- The Motivation
 - Water is a fundamental resource for geophysical, ecological and socioeconomic systems
 - Water connects natural and human systems
 - Social-ecological systems (Berkes and Folke, 1998)
 - Anthropocene (Crutzen, 2002)
 - Socio-hydrology (Sivapalan *et al.*, 2012)
 - In such integrative context, economic principles represent a means of managing water resources in SESs

- The Objective
 - To propose a methodological framework for the integration of modelling techniques capable of capturing the dynamics of human-water systems;
 - To evaluate the utilization of a modular approach to connect, in a sequential fashion, a multi-attribute revealed preference model (RPM) with SWAT

METHODOLOGY – RPM

- Revealed Preference Model (RPM)
 - Built upon revealed preference theory (Samuelson, 1938) and behavioural economics principles:

"Given the budgetary constraint and alternative baskets of goods having the same price, agents reveal their preference by choosing a particular basket"

- Four fundamental assumptions:
 - 1. <u>Rationality</u> (i.e. chose what is best for them)
 - 2. <u>Transitivity</u> (i.e. if A>B and B>C, then A>C)
 - 3. <u>Consistency</u> (i.e. same conditions, same preferences)
 - 4. <u>Price Inducements</u> (i.e. incentives affect preferences)

- In microeconomic modelling of agricultural systems:
 - <u>Focus</u>: analysing the patterns of <u>crop yields</u>, <u>revenues</u>, and <u>costs</u>
 - <u>Spatial scale</u>: <u>farm</u> or <u>district</u> scales

METHODOLOGY – RPM

- The **preference** of agents depends on the provision of attributes they value (e.g. profit, avoidance of risk, etc.)
- The <u>attributes</u>, in turn, depend on available choices (e.g. crop varieties, crop rotation, water availability, capital investment, etc.)
- Mathematically:

$$\begin{split} & \underset{X}{\text{Max } U(x)} = U(z_1(x); \ z_2(x); z_3(x) \dots \ z_m(x)) \\ & \text{s.t.:} \quad 0 \leq x_i \leq 1 \\ & \sum_{i=1}^n x_i = 1 \\ & X \in F(x) \\ & z = z(x) \in R^m \end{split}$$

 where U is the utility function, F(x) is the domain of feasible choices, x is the decision variable (i.e. unique combination of crops and land management techniques), and z(x) is the correspondent unique combination of attributes.

Methodology – RPM

- The domain of feasible choices *F(x)* describes the constraints agents face when deciding on land use and land use change, including:
 - irrigable and total land available;
 - climatic conditions;
 - know-how;
 - regulations, and;
 - water availability.

• Water availability constraint, of particular relevance for the purpose of the case study to be shown, can be expressed as:

 $\sum_{i=1}^{n} w_i x_i ha \le W_g$

- Where w_i is the amount of water needed to irrigate one hectare of crop x_i, and W_q represents the water availability per ha.
- The model is then calibrated by determining the objective function that minimizes the error between the observed and calibrated decisions with respect to the relevant combination of attributes

METHODOLOGY – SWAT

- Why using SWAT as the hydrologic counter-part?
 - SWAT is an eco-hydrological model
 - Different land management operations (e.g. irrigation, crop rotation, etc.)
 - Accessible source code

- Which processes are of particular interest?
 - Land use & land management:
 - Crop selection, crop rotation, irrigation water requirements, etc.
 - Water balance
 - Curve number, runoff, evapotranspiration, revap, irrigation, etc.

THE METHODOLOGICAL FRAMEWORK

2017 International SWAT Conference - Arthur H. Essenfelder - arthur.essenfelder@cmcc.it

THE METHODOLOGICAL FRAMEWORK

"Lumped spatial <u>entities</u> resulting from the combination of unique land-cover, land management, soil, topographic, and socio-economic characteristics"

THE CASE STUDY

- The problem
 - Allocation of water resources for irrigation
 - Implementation of a water policy restriction in the study area
- The objective of the study
 - To explore how different water policy restrictions can affect the land management and hydrology of the Rio Mundo Watershed
- The case study
 - Area ≈ 2,500 km²
 - Characterised by:
 - Agricultural Water Demand Units;
 - Reservoirs;
 - Water transfer (Tagus-Segura);

THE CASE STUDY

Water P			ter Policy	Policy Restriction				Water Policy Restriction			
AWDU	Crop Type	0%	5%	25%	50%	AWDU	Crop Type	0%	5%	25%	50%
2	Vineyard	100%	100%	100%	100%		Other	13%	13%	13%	13%
7	Almonds	28%	28%	28%	28%	10	Almonds	15%	15%	15%	15%
	Maiz	48%	42%	18%	0%		Barley	10%	10%	28%	30%
	Wheat	10%	16%	40%	58%		Maiz	20%	20%	2%	0%
	Orchards	14%	14%	14%	14%		Orchards	41%	41%	41%	41%
8	Oats	6%	6%	20%	29%	11	Other	64%	64%	64%	64%
	Barley	17%	17%	20%	29%		Vineyard	36%	36%	36%	36%
	Maiz	17%	17%	0%	0%	12	Other	19%	19%	19%	19%
	Alfalfa	27%	27%	27%	9%		Almonds	18%	18%	18%	18%
	Other	33%	33%	33%	33%		Barley	20%	23%	34%	40%
9	Barley	13%	17%	27%	42%		Maiz	20%	18%	6%	0%
	Maize	21%	16%	7%	0%		Orchards	23%	23%	23%	23%
	Alfalfa	8%	8%	8%	0%		Oats	11%	13%	0%	0%
	Orchards	47%	47%	47%	47%		Barley	17%	15%	28%	33%
	Other	11%	11%	11%	11%	15	Maiz	28%	28%	28%	33%
							Alfalfa	9%	9%	9%	0%
							Orchards	35%	35%	35%	35%
						22	Orchards	100%	100%	100%	100%

CONCLUSIONS

- The coupling of SWAT with a RPM provides an interesting framework for studying alternative adaptation strategies in a watershed
- The utilisation of socio-economic based models can help in better describing the dynamics of agricultural systems in a watershed with respect to pressures
- The coupling of both modelling techniques enables the simulation of the connections and feedback responses between human and water systems
- However, there is still work to do (a lot of) to make the coupled model more dynamic and responsive

Thank You!

The work presented here has received funding from Climate KIC through the AGRO ADAPT Project

2017 International SWAT Conference - Arthur H. Essenfelder - arthur.essenfelder@cmcc.it