

Impacts of climate variability and water resources development on river flows and water balance of Huai Luang Watershed, Thailand

Thanapon Piman, Chalermchai Pawattana, Anujit Vansarochana, Aekkapol Aekakkararungroj, Rattana Hormwichian

The 2017 International SWAT Conference Warsaw University of Life Sciences 28th – 30th June 2017, Warsaw, Poland

> STOCKHOLM ENVIRONMENT

INSTITUTE

Study area

- Watershed area: 4,122 km²
- ✤ Monthly temp: 16.3-36.3^oC
- ✤ Annual rainfall: 1,145–2,174 mm
- Land-use:
 - 68%agriculture
 - 14%forest
 - 6%urban area
- Stakeholders in the basin have highlighted that changing rainfall pattern/variation and impacts of water resources development are the most critical concerns

SEI STOCKHOLM ENVIRONMENT INSTITUTE

River Profile

Rainfall analysis: trend and variation

- An increasing trend of annual rainfall during 32 year-period from 1982–2013
- The variation of annual rainfall has double from ± 250 mm during 1982–1993 to ± 500 mm during 1998–2013

SEI Stockholm Environment Institute

Rainfall analysis: spatial distribution

Water resources development plan

- Increase irrigation area
 - 315,195 rai (127,557 ha)
 - 200,000 rai (80,938 ha)
- Reduce water shortage for irrigation
- Reduce flood area 54,390 rai (22,011 ha)
- Increase water supply for domestic and industrial use

Modelling Tools

Hydrodynamic and flood model

SWAT Model Setup

Topo/weather Land cover Soil SWAT Subbasin

SWAT Model Calibration and Validation

Daily flows

Satisfactory

Monthly flows

STOCKHOLM ENVIRONMENT

INSTITUTE

Global Sensitivity Analysis

Simulated Flow Analysis

An increasing trend of annual flows at the outlet during 30 year-period from 1983–2012

WEAP Model Setup

SEI STOCKHOLM ENVIRONMENT INSTITUTE

Water Demand Estimation

Irrigation water demand

Domestic water demand

Percentage of water supply coverage

Domestic water use

STOCKHOLM ENVIRONMENT

INSTITUTE

Irrigation water use

Conclusion

Next step: Flood Modelling

Flood in 2010 during Sep-Oct

Mike Flood (M11+M21)

Field Survey

Next step: Impacts of Climate Change

- Climate change projection database
- 1x1 km resolution
- Contain 4 RCPs and 40 GCMs from the CMIP5
- Generate monthly change factors (rainfall, temperature, humidity, solar radiation) for the SWAT model

STOCKHOLM ENVIRONMENT

INSTITUTE

Acknowledgement: Thai Research Fund (TRF)

Contact: thanapon.piman@sei-international.org

