

Evaluation of Groundwater Use Impact on the Drying Stream by Modifying SWAT Groundwater Balance Equation

2017. 6. 30

Jung, Chung-Gil

(wjd0823@konkuk.ac.kr)

Lee, Ji-Wan / Kim, Da-Rae / Kim, Seong-Joon

Konkuk University, South Korea

Background and purpose

- Recently in South Korea, it was reported that 84 % of total small streams showed the drying stream phenomena (Rural research institute, 2006).
 - The 7,917 groundwater wells have been developed to obtain more agricultural and drinking water in rural areas near streams since 1980.

• The pumping water use in 2007 was about 3,735 million m³/year occupying 10 % of total national water use (K-water 2008).

■ The objective of this study is to identify the drying stream phenomena through tracing the flow decrease by SWAT model groundwater equation under groundwater use and return flow conditions.

Study area

Actual drying stream area

- Area: 358.8 km²
- Discharge station : Hannadaegyo
- Study area : Sapgyocheon upstream watershed
- Annual average precipitation:1362.3 mm for 20years
- annual average temperature :
 12.0 °C for 20 years
- Forest area: 39.8 %

Observed water level station

Cheonan weather station

Watershed outlet

EARTH INFORMATION ENGINEERING LAB.

Watching point (WP)

▼

Sub watershed

Stream

KONKUK UNIVERSITY

SWAT model groundwater use equation (Shallow aquifer equation)

- SWAT model is a continuous, long-term, and distributed-parameter model designed to predict
 the impact of land management practices on the hydrology and water-quality and
 contaminant transport in agricultural watersheds.
- SWAT simulates two aquifers in each subbasin. The shallow aquifer is an unconfined aquifer that contributes to flow in the main channel or reach of the subbasin.
- The water balance for the **shallow aguifer** as follows:

$$aq_{sh,i} = aq_{sh,i-1} + w_{rchrg} - Q_{gw} - w_{revap} - \mathbf{w}_{pump,sh}$$

 $aq_{sh,i}$ = Amount of water stored in the shallow aquifer on day i (mm) $aq_{sh,i-1}$ = Amount of water stored in the shallow aquifer on day i-1 (mm) w_{rchrg} = Amount of recharge entering the shallow aquifer on day (mm) Q_{gw} = Groundwater flow, or base flow, into the main channel on day (mm) w_{revap} = Amount of water moving into the soil zone in response to water deficiencies on day (mm) $w_{rump,sh}$ = Amount of water removed from the shallow aquifer by pumping on day (mm)

Drying stream definition

- The phenomenon defined that the river is almost dry enough to see the bottom of the river as a normal stream (Gyeonggi Research institute, 2003).
- The phenomenon defined that flow is seriously **reduced by anthropogenic factors** (Ministry of Land, Infrastructure and Transport, 2009).
- In this study, the 10 day minimum flow (Q355) change was evaluated as the standard criteria suggested by Ministry of Land, Infrastructure, and Transport
 (Ministry of Land, Infrastructure and Transport, 2009).
- To estimate the drying stream, the volume of streamflow were evaluated.

Me	ethod	Parameter	Description
Vol	lume	Discharge change of 10 day minimum flow (Q355)	The discharge difference between 10 day minimum flow using the flow duration analysis between the present and ground use conditions

Groundwater use data

- Groundwater use data are available on the website of National Groundwater Information
 Center (NGIC).
- The NGIC provides monthly and yearly groundwater use data at watersheds and administrative districts.
- In this study, monthly groundwater from 2000 to 2015 use was divided into living, industrial, and agricultural use.

Groundwater use

Using monthly groundwater use records at watching points (WP).

Return flow

- Return flow is defined as the quantity of water that can be used again and returned to the stream.
- The rate of return has been used in the past as a practice.
- Recently, a lot of research is underway to directly estimate the return flow as planned observation of groundwater facilities and sewage facilities are possible.
- From domestic and industrial water statistics report, domestic and industrial return flow was calculated in South Korea.
- The agricultural return flow rate used recent experimental study in South Korea.

	Institution	Site	Period	Experimental plot area (ha)	
	Daejeon Regional Office of Construction	Gongju	2003.04 – 2003.09	70.3	This study area 40.0
	Management	Yeongi		171.0	38.1
	Kangwon University	Eumseong	2002.05 – 2002.09	14.8	18.0
		Chungju		10.6	66.3
		Chuncheon1		7.1	70.8
EARTH		Chuncheon2		1.5	53.3

Return flow rate (Domestic water)

We use waterworks statistics and sewer statistics reports.

Study area

Results

Return flow rate (Industrial water)

A deministrative distu	, ist	Water use (m ³)		Wastewater discharge (m³)	Dotum flow water (94)
Administrative distr	Waterworks	Groundwater	Stream	Waterworks	Return flow rate (%)
Seoul	31,377,650	3,679,908	464,583,476	64,462,650	12.9
Pusan	82,180,778	3,554,846	194,310,247	177,328,680	63.3
Daegu	57,485,803	12,413,619	355,543,660	144,394,000	33.9
Inchon	63,582,970	1,689,912	84,313,908	28,820,035	19.3
Gwangju	11,018,885	6,427,860	169,274,634	22,736,580	12.2
Ulsan	26,786,046	3,444,919	188,625,217	39,399,925	18.0
Dajeon	227,431,572	7,722,140	239,968,958	288,560,240	60.7
Gyeonggi-do	286,671,196	88,934,980	1,253,848,020	703,467,420	43.2
Kangwon-do	11,394,986	22,086,196	121,308,885	89,001,600	57.5
Chungcheongbuk-d	o 34,023,577	24,205,935	····87,293,956	69,239,405	47:6
Chungcheongnam-c	lo 213,715,258	35,883,425	···369,716,069	339,224,430	54.8
Jeollabuk-do	67,726,008	19,072,659	218,176,915	172,520,900	56.6
Jeollanam-do	323,879,232	114,357,578	852,265,437	236,392,615	18.3
Gyeongsangbuk-do	197,374,448	32,269,068	263,928,192	437,038,590	88.5
Gyeongsangnam-d	0 47,695,013	29,251,090	458,566,536	127,826,285	23.9

Modification of SWAT model code

• We add the **return flow rate** (*Rate*_{returnflow}) by **domestic**, **industrial**, **and agricultural water** in shallow aguifer equation.

$$aq_{sh,i} = aq_{sh,i-1} + w_{rchrg} - Q_{gw} - w_{revap} - w_{pump,sh} \times Rate_{returnflow}$$

- The modified code can read groundwater use text file by domestic, industrial, and agricultural water files.
- SWAT simulates average monthly water use (wus file).
- In this study, we modified readwus file for applying monthly groundwater use per year.

```
if (yrs == 0) then
   do i = 1. hrutot(i)
        ihru = 0
        ihru = nhru + i
        do mon = 1.12
           wushal(mon.ihru) = swush(mon)
        end do
   end do
else if (yrs == 1) then
   do i = 1. hrutot(i)
        ihru = 0
        ihru = nhru + i
                                                Add code
           do mon = 1, 12
                wushal(mon.ihru) = swush(mon+12)
   end do
else if (yrs == 2) then
   do j = 1, hrutot(i)
        ihru = 0
        ihru = nhru + j
            do mon = 1.12
                wushal(mon,ihru) = swush(mon+24)
           end do
   end do
```

Model simulation for streamflow

- Using daily discharge records at outlet with groundwater use and return flow rate.
- Calibration period: 2005-2010 / Verification period: 2011-2015

	Runoff	rate (%)			RMSE
Year	Obs.	Sim.	R ²	NSE	(mm/ day)
2005	70.7	68.7	0.59	0.55	1.38
2006	63.0	68.7	0.86	0.75	3.28
2007	56.9	65.5	0.73	0.67	7.03
2008	66.7	68.2	0.77	0.70	0.70
2009	65.5	61.3	0.72	0.60	2.19
2010	78.9	67.0	0.88	0.87	8.64
2011	78.3	71.1	0.63	0.61	6.96
2012	85.6	71.0	0.85	0.83	10.29
2013	59.9	64.7	0.70	0.55	2.80
2014	59.5	60.4	0.80	0.66	1.01
2015	60.7	55.0	0.70	0.60	1.47
Mean	64.6	66.5	0.73	0.67	2.92

EARTH INFORMATION ENGINEERING LAB.

Comparison of streamflow

- No consideration of groundwater use and return flow (scenario1).
- Consideration of groundwater use (scenario2).
- Consideration of groundwater use and return flow (scenario3).

Scenario	R ²	NSE	RMSE (mm/day)
Scenario1	0.70	0.62	4.14
Scenario2	0.68	0.24	3.96
Scenario3	0.73	0.65	2.92

Evaluation of flow duration analysis

- No consideration of groundwater use and return flow (scenario1).
- Consideration of groundwater use (scenario2).
- Consideration of groundwater use and return flow (scenario3).

Estimation index of drying stream progress

- Evaluation of drying stream severity was suggested by drying stream index (DSI).
- It can shows simply current states of drying stream.
- The 10 day minimum flow (Q355) when groundwater use and return flow didn't considered was defined as standard flow (scenario 1).
- Calculate the number of flow occurrences that is less than the standard flow for each scenario.

DSI	Drying Stream Progress	Condition	Comments
1	D≤10	Normal	-
2	10 <d≤30< th=""><th>Weak</th><th>Concern monitoring</th></d≤30<>	Weak	Concern monitoring
3	10 <d≤30< th=""><th>Warning</th><th>Keep watch carefully</th></d≤30<>	Warning	Keep watch carefully
4	60 <d≤90< th=""><th>Severe</th><th>Require short-term improvement</th></d≤90<>	Severe	Require short-term improvement
5	90 <d< th=""><th>Very severe</th><th>Require long-term improvement</th></d<>	Very severe	Require long-term improvement

Estimation of DSI Scenario 2: consideration of groundwater use / Scenario 3: consideration of groundwater use and return flow

Date	DSI at	: WP 1	DSI at	: WP 2	DSI at	: WP 3	DSI at	WP 4	DSI at	WP 5
Date	Sce.2	Sce.3	Sce.2	Sce.3	Sce.2	Sce.3	Sce.2	Sce.3	Sce.2	Sce.3
2005	5	3	5	3	4	2	5	2	5	3
2006	5	4	5	5	5	3	5	3	5	4
2007	5	5	4	3	3	3	5	4	4	4
2008	5	4	5	4	5	3	5	3	5	4
2009	5	5	5	5	5	5	5	5	5	5
2010	5	5	5	4	4	3	5	4	5	4
2011	4	3	5	3	3	2	5	2	4	3
2012	3	3	5	2	3	2	4	2	3	3
2013	4	2	5	1	2	1	4	1	4	2
2014	5	5	5	5	5	4	5	5	5	5
2015	5	5	5	5	5	5	5	5	5	5

Estimation of DSI

Date	DSI				
Date	Sce.1	Sce.2	Sce.3		
Mean (2005- 2015)	3	5	4		

Date	DSI				
Date	Sce.1	Sce.2	Sce.3		
Mean (2005- 2015)	1	5	3		

- No consideration of groundwater use and return flow (scenario1).
- Consideration of groundwater use (scenario2).
- Consideration of groundwater use and return flow (scenario3).

Drying stream was extended from WP 2

Date	DSI			
Date	Sce.1	Sce.2	Sce.3	
Mean (2005- 2015)	2	5	4	

Date	DSI				
Date	Sce.1	Sce.2	Sce.3		
Mean (2005- 2015)	1	5	4		

Date	DSI				
Date	Sce.1	Sce.2	Sce.3		
Mean (2005- 2015)	2	4	3		

Summary and Conclusion

- ☐ This study tried to identify the drying stream phenomena through tracing the flow decrease by continuous long-term hydrologic routing under groundwater use conditions.
- From the results of the SWAT model, the specific locations and streams affected by groundwater use and return flow impact are to be identified.
- ☐ The SWAT was calibrated for 6 year (2005-2010) daily streamflow data at actual drying stream area and verified with another 5 years (2011-2015) data with consideration of groundwater use and return flow.
 - The average coefficient of determination (R²; Legates and McCabe, 1999) and the Nash-Sutcliffe model efficiency (NSE; Nash and Sutcliffe, 1970) for streamflow were 0.73 and 0.67 respectively.

Thank you

Earth information engineering lab.

Jung, Chung Gil

Dept. of Civil, Environmental and Plant engineering Konkuk university, Seoul, South Korea

Phone: +82-2-444-0186

Email: kimsj@konkuk.ac,kr

Web: http://konkuk.ac.kr/~kimsj

EARTH INFORMATION ENGINEERING LAB.

KONKUK UNIVERSITY