

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

Javier Senent-Aparicio, Adrián López-Ballesteros, Julio Pérez-Sánchez, Ángel García-García

June 30th, 2017

Outline

- Introduction. Scientifical Context and Objectives.
- Watershed Description
- Methodology
 - SWAT Model
 - Climate change impact assessment study
 - Basic Flow Methodology
 - Indicators of Hydrologic Alteration in Rivers (IAHRIS)
- Results and Discussion
 - Model Performance
 - Climate change impacts
- Conclusions

Scientifical Context

Introduction

Watershed Description

Methodology

Results and Discussion

- According to the Intergovernamental Panel on Climate Change the precipitation pattern and temperature will significantly change by the end of 21st century, which will affect the *hydrologic regime*.
 Streamflow conditions are crucial to determining the abiotic structure and biotic composition of riverine ecosystems.
- □ The success in the conservation of the biodiversity depend on our ability to know, protect and/or restore the main components of the natural flow regime.

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

Objective

- Calibrate and validate, in daily basis, the Ladra River basin (NW Spain) using SWAT model in order to assess the climate change impact on the hydrological regime in the Ladra River Basin for 2071-2100 period using RCA4 regional climate model driven by the CNRM-CM5 global circulation model.
 - Check the use of some tools recommended in the Spanish Hydrologic Planning Instruction in order to assess the impact on hydrological regime.
 - Indicators of Hydrologic Alteration in Rivers (IAHRIS)
 - Basic Flow Methodology (BFM)

Introduction

Watershed Description

Methodology

Results and Discussion

2017 SWAT Conference Warsaw, Poland

Introduction

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

N

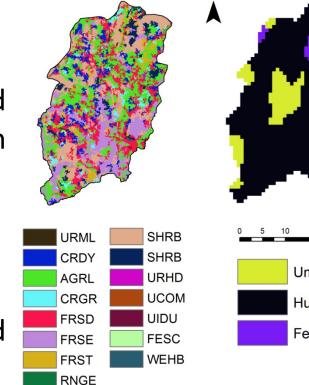
The Ladra River is one of the most unique water ecosystems in the Atlantic region in the Iberian Peninsula. It is located in the northwest of Spain, within Terras do Miño *Biosphere Reserve* (declared in 2002 by UNESCO) and was selected as a *Site of Community Importance* (SCI) by the European Union.

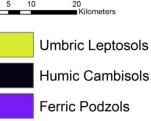
Watershed Description			har and	
			Row S	
	Area	843 km ²		
Methodology	Elevation	392 – 906 m	52~3	
	Precipitation	1139 mm	and man	
	Discharge	17.9 m³/s	مسمی مسلم Miño-Sil Water District	
Results and Discussion			Gauging Station Ladra River Basin DEM Value High : 906	
Conclusions			Low : 392	0 3.25 6.5 13 Kilometers

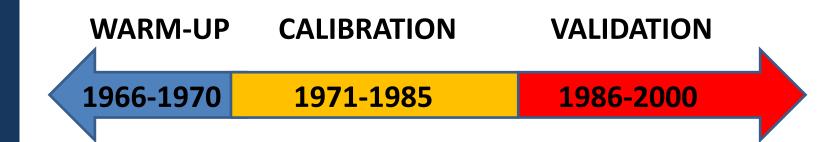
SWAT Model. Data Collection

Introduction

introduction	Data typeSource and DescriptionDEMExtracted from the Spanish National Geographic				
	Data type	Source and Description			
Watershed Description	DEM	Extracted from the Spanish National Geographic Institute (IGN) with a resolution ratio of 25 m.			
Methodology	Land Use Map	Obtained from the CORINE Land Cover 1:100,000 vector map			
Methodology	Soil Map	Obtained from the Harmonized World Soil Database (HWSD) with a resolution of 1 km			
Results and Discussion	Weather Data	Daily temperature and precipitation data were extracted from Spain02 (Herrera et al., 2012). The dataset is available on daily time scale with resolution of 12 km.			
Conclusions	Stream Discharge	Stream discharge taken from CEDEX site no. 1619 located at Begonte for the study period.			


SWAT Model. Model Set-up


- Introduction
- Sentivity analysis


- Watershed Description
- Calibration was performed using SUFI2 routing in SWAT-CUP (1000 runs)
- Methodology

Results and Discussion

- KGE as objective function
- The model was calibrated at a daily scale

Climate Change Impact Assessment Study

Introduction

Watershed Description

Methodology

Results and Discussion

- Weather input data for SWAT has been extracted from the climate model outputs
- Regional Climate Model: RCA4
- Parent GCM: CNRM-CM5
- Grid Resolution: 0.11 deg ≈ 12.5 km
- CORDEX Domain: EURO-CORDEX
- Modeling Agency: Swedish Meteorological and Hydrological Institute (SMHI)
- Scenarios: RCP 4.5, RCP 8.5
- Bias Correction Technique: Distribution Mapping (CMHyd)
- Land use pattern is considered same for the future scenario

Indicators of Hydrologic Alteration in Rivers (IAHRIS)

- IAHRIS is a software designed to obtain *parameters* that characterize the flow regime, both the natural and the altered regime, in a section of the river.
- The software calculates a set of *indicators* that evaluate the degree of alteration of the most relevant environmental aspects of the flow regime based on the Spanish Hydrologic Planning Instruction.
- IAHRIS is a free software, available at the website: <u>http://www.ecogesfor.org/IAHRIS_en.html</u>

Introduction

Watershed Description

Methodology

Results and Discussion

Parameters for the characterization of the flow regime

Introduction

Watershed Description

Methodology

Results and Discussion

COMP	ONENTS OF THE REGIME	ASPECT	PARAMETER
		MAGNITUDE	Average of the annual volumes
HABITUAL DISCHARGE	MONTHLY OR ANNUAL VOLUMES	VARIABILITY	Difference between the maximum and the minimum monthly volume along the year
UAL D	VOLUMES	SEASONALITY	Month with the maximum and the minimum water volume along the year
НАВІТІ	DAILY FLOWS	VARIABILITY	Difference between the average flows associated to the percentiles 10% and 90%
	MAXIMUM VALUES of the daily flows (FLOODS)	MAGNITUDE AND FREQUENCY	Average of the maximum daily flows along the year Effective discharge Connectivity discharge Flushing flood (Q5%)
		VARIABILITY	Coefficient of variation of the maximum daily flows along the year Coefficient of variation of the flushing flood series
V.		DURATION	Maximum number of consecutive days in the year with q> Q 5%
E DAT		SEASONALITY	Average number of days in the month with q> Q 5%
EXTREME DATA	MINIMUM VALUES of the daily flows (DROUGHTS)	MAGNITUDE AND FREQUENCY	Average minimum daily flows along the year Ordinary drought discharge (Q 95%)
		VARIABILITY	Coefficient of variation of the minimum daily flows along the year Coefficient of variation of the ordinary droughts series
		DURATION	Maximum number of consecutive days in the year with q < Q 95% Average number of days in the month with a daily flow equal to zero
		SEASONALITY	Average number of days in the month with q <q 95%<="" td=""></q>

List of Indicators of Hydrologic Alteration

Introduction

Watershed Description

Methodology

Results and Discussion

ASPECT		CODE	NAME
	MAGNITUDE	IAH 1	Magnitude of the annual volumes
	MAGNITUDE	IAH 2	Magnitude of the monthly volumes
HABITUAL	VARIABILITY	IAH 3	Habitual variability
DISCHARGE	VARIADILITT	IAH 4	Extreme variability
	SEASONALITY	IAH 5	Seasonality of maximum values
	SEASONALITT	IAH 6	Seasonality of minimum values
		IAH 7	Magnitude of the maximum floods
	MAGNITUDE	IAH 8	Magnitude of the effective discharge
FLOODS	AND FREQUENCY	IAH 9	Magnitude of the connectivity discharge
		IAH 10	Magnitude of the flushing floods
	VARIABILITY	IAH 11	Variability of the maximum floods
	VARIADILITT	IAH 12	Variability of the flushing floods
	DURATION	IAH 13	Flood duration
I	SEASONALITY	IAH 14	Flood seasonality (12 values, one for each month)
	MAGNITUDE	IAH 15	Magnitude of the extreme droughts
	AND FREQUENCY	IAH 16	Magnitude of the habitual droughts
		IAH 17	Variability of the extreme droughts
DROUGHTS	VARIABILITY	IAH 18	Variability of the habitual droughts
		IAH 19	Droughts duration
	DURATION	IAH 20	Number of days with null flow (12 values, one for each month)
	SEASONALITY	IAH 21	Droughts seasonality (12 values, one for each month)

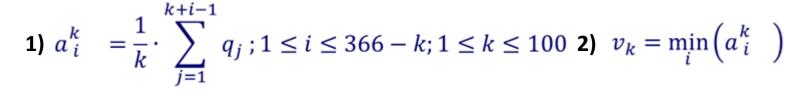
Basic Flow Methodology (BFM)

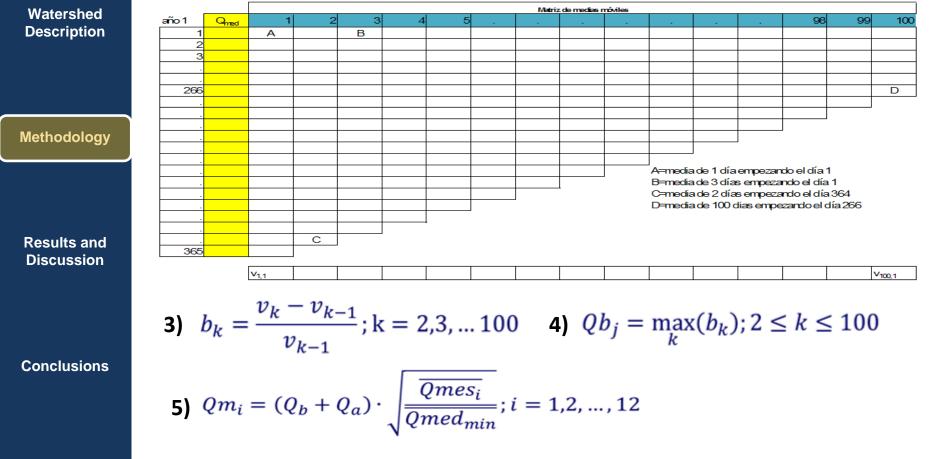
Introduction

Watershed Description

Methodology

Results and Discussion


- The BFM is a hydrological methodology used to calculate environmental flow needs for river regulation.
- It has been established as a method of reference gathered in the Spanish Hydrologic Planning Instruction.
- The BFM does not provide a unique minimum flow value, but an environmental or maintenance flow regime:
 - Basic Flow
 - Bankfull Flow
 - Maximum Flow
 - Rate of Flow Change



Basic Flow Methodology (BFM)

Introduction

References

Introduction

Watershed Description

Methodology

Results and Discussion

Conclusions

 Fernández, J.A., Martínez, C., Magdaleno, F. 2012. Application of indicators of hydrologic alteration in the designation of heavily modified water bodies in Spain. *Environmental Science & Policy*, 16, 31-43.

 Palau, A., Alcázar, J. 2012. The Basic Flow Method for incorporating flow variability in environmental flows. *River Research & Applications*, 28, 93-102.

> RIVER RESEARCH AND APPLICATIONS *River Res. Applic.* 28: 93–102 (2012) Published online 23 August 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rra.1439

THE BASIC FLOW METHOD FOR INCORPORATING FLOW VARIABILITY IN ENVIRONMENTAL FLOWS

A. PALAU and J. ALCÁZAR*

Department of Environment and Soil Science, University of Lleida, Avda. Alcalde Rovira Roure 191, Lleida 25198, Spain

ABSTRACT

The Basic Flow is a methodology used to calculate environmental flow needs for river regulation. It has gained increased recognition in Spain for hydrological planning. It is based on the study of irregularities in hydrological series of daily mean flows using the simple moving average model as a tool to extract the relevant information. The Basic Flow Methodology (BFM), beyond providing a unique minimum flow value, constitutes a complex management proposal for regulated rivers which includes other management aspects affecting the biological functioning of a river (such as the necessity of flow variability, bankfull flows or varying flow rates) through the establishment of monthy instream flow requirements.

This paper presents a practical application of the BFM in the Silvan stream, a natural mountain stream impacted by a hydroelectric regulation project. Results are discussed in terms of physical habitat created and compared to those obtained from the application of another method based on the Instream Flow Incremental Methodology, using a set of computer programs (RHYHABSIM) for physical habitat simulation. Copyright ()) 2010 John Wiley & Sons, Ltd.

KEY WORDS: basic flow; environmental flow; regulated river management

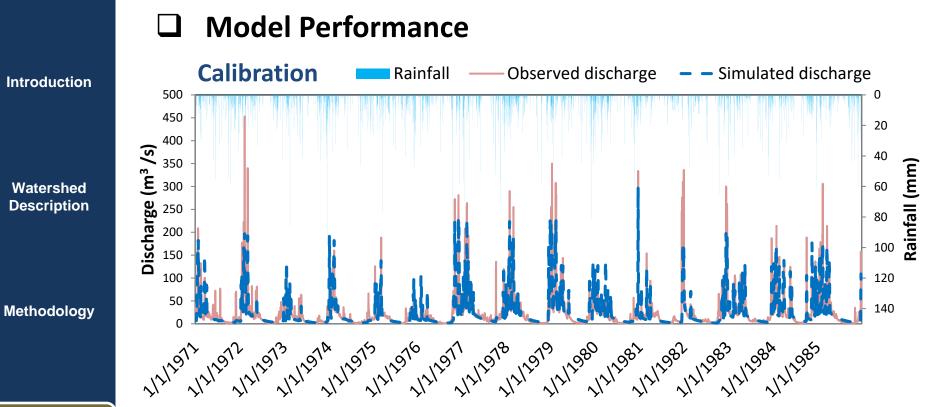
Received 6 May 2009; Revised 15 March 2010; Accepted 24 June 2010

Review

Application of indicators of hydrologic alterations in the designation of heavily modified water bodies in Spain

José A. Fernández ^{a,*}, Carolina Martínez ^a, Fernando Magdaleno ^b

^a Research Group of Ecology and Sustainable Forest Management, Forestry Engineering School, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain


^bDepartment of Environmental Engineering. CEDEX, Ministry of Public Works – Ministry of the Environment and Rural and Marine Affairs, Alfonso XII, 3, 28014 Madrid, Spain

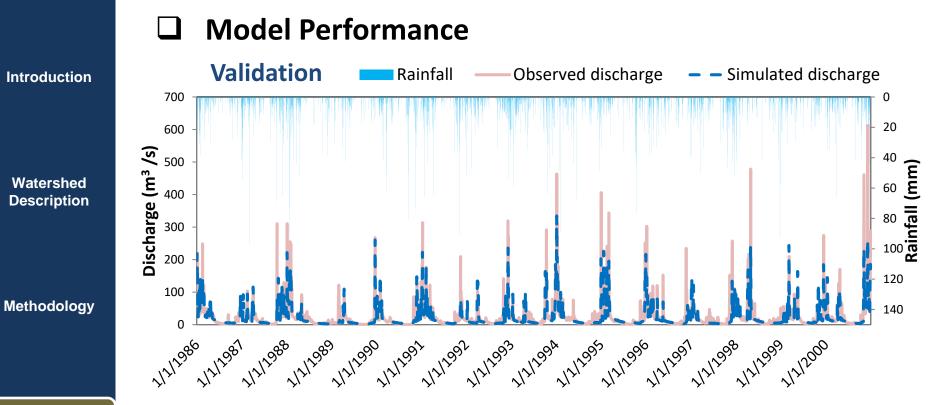
2017 SWAT Conference Warsaw, Poland

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

	Calibration
NSE	0.69
RSR	0.55
PBIAS	-2.54
R2	0.72

Results and Discussion

Watershed


Description

2017 SWAT Conference Warsaw, Poland

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

	Validation
NSE	0.63
RSR	0.61
PBIAS	7.22
R2	0.65

Results and Discussion

Climate Change Impacts

Mean Annual Precipitation

16

Introduction

Watershed Description

Methodology

Results and Discussion

Conclusions

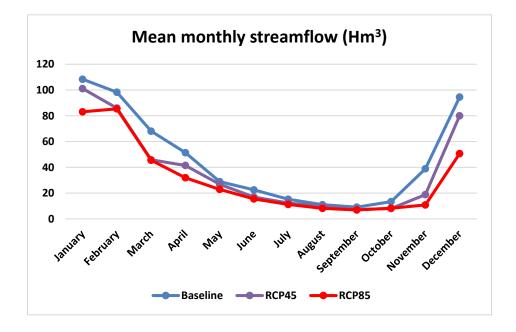
	1971-2000 Baseline	2071-2100 RCP4.5	2071-2100 RCP8.5
Precipitation (mm)	1138.96	1047.87	1003.65
Δ (mm)	-	-91.09	-135.31
Δ (%)	-	-8.00	-11.88

Mean Annual Temperatures

	1971-2000 Baseline	2071-2100 RCP4.5	2071-2100 RCP8.5
T _{max} (°C)	15.92	17.72	19.73
T _{min} (°C)	5.95	7.46	9.18
ΔT _{max} (°C)	-	1.80	3.81
ΔT _{min} (°C)	-	1.51	3.22

Climate Change Impacts

Mean Annual Streamflow


Introduction

Watershed Description

Methodology

Results and Discussion

	1971-2000 Baseline	2071-2100 RCP45	2071-2100 RCP85
Mean annual streamflow (Hm ³)	564.62	458.41	382.43
Δ Streamflow (Hm ³)	-	-106.22	-182.19
Δ Streamflow (%)	-	-18.81	-32.27

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

Climate Change Impacts

Basic Flow

Introduction

Watershed Description

Methodology

Results and Discussion

	Baseline	RCP45	RCP85	ΔRCP45 (%)	ΔRCP85 (%)
January	4.82	4.10	4.05	-14.88	-15.98
February	4.64	4.02	3.98	-13.36	-14.16
March	4.48	3.75	3.69	-16.12	-17.59
April	4.36	3.85	3.61	-11.73	-17.16
May	4.17	3.64	3.54	-12.84	-15.18
June	4.16	3.57	3.51	-14.14	-15.63
July	4.13	3.57	3.51	-13.54	-15.02
August	4.13	3.58	3.51	-13.30	-14.98
September	4.15	3.57	3.53	-13.95	-14.88
October	4.34	3.65	3.57	-15.89	-17.71
November	4.52	3.86	3.63	-14.63	-19.58
December	4.99	4.51	4.25	-9.63	-14.80

2017 SWAT Conference Warsaw, Poland

Ir

Μ

С

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

		Climat	e Cł	nange	Impacts IAHRIS	S (RCF	P 8.5)			
ntroduction			INDICES DE ALTERACIÓN HIDROLÓGICA (IAH)			NIVEL I	NIVEL	NIVEL	NIVEL IV	NIVEL V
niroduction		ASPECTO		CÓDIGO	DENOMINACIÓN	0,8< I ≤1		0,4< I ≤0,6	0,2< I	0< I ≤0,2
			0.84	IAH7	Magnitude of the maximum floods					
Watershed			1.00		Magnitude of the effective discharge					
Description	Š	MAGNITUDE	0.88		Frequency of the connectivity discharge					
	FLOODS		0.65	IAH10	Magnitud e of the flushing floods					
lethodology	Ē	VARIABILITY	0.59	IAH11	Variability of the maximum floods					
			0.53	IAH12	Variability of the flushing floods					
		DURATION	0.69	IAH13	Floods duration					
		SEASONALITY	0.83	IAH14	Floods seasonality					
Results and Discussion		MAGNITUDE	0.75		Magnitude of the extreme droughts					
	S	MAGNITODE	0.76	IAH16	Magnitude of the habitual droughts					
	UGH	STHO DO VARIABILITY	0.70	1 1/1 8 1 /	Variability of the extreme droughts					
Conclusions	DRO		0.69		Variability of the habitual droughts					
		DURATION	0.44	IAH19	Droughts duration					
		SEASONALITY	1.00		Number of days with null flow					
		VARIABILITY	0.44	IAH21	Droughts seasonality					

20

Climate Change effects on the hydrological regime in the Ladra River Basin (NW Spain)

Introduction

Watershed Description

Methodology

Results and Discussion

- The SWAT model has been applied in the Ladra River basin and it showed a general good performance.
- Climate change scenarios showed a noticeable impact on water flow, decreasing up to 32%.
- The results show an important risk of more frequent and severe drought conditions.
- Climate change will also affect the variability of floods.
- The model provides guidelines to decision makers and sets the possibility to test further scenarios.

Thanks for your attention