APEX SIMULATION OF EDGE-OF-FIELD WATER QUALITY BENEFITS FROM UPLAND BUFFERS

C. BAFFAUT, A. SENAVIRATNE, J.A. LORY, R.P. UDAWATTA, N.O. NELSON, J.R. WILLIAMS, AND S.H. ANDERSON

GREENLEY WATERSHED STUDY

Soils with a restrictive layer at 4-37cm depth

- Putnam silt loam at the summit (0 1% slope)
- Kilwinning silt loam on the side slopes (2 5%)
- Armstrong loam on the foot slopes (5 9%)

Prior to 1991: Corn-soybean rotation with tillage 1991 – 2010 : No-till corn-soybean rotation

TREATMENT PERIOD: 1998 - 2008

- Grass legume strips (4.5m wide) redtop, brome grass, birds foot trefoil
- Agroforestry strips (4.5m wide): grass + pin oak, swampwhite oak, and bur oak

MONITORING

Each watershed is drained by a grass waterway, leading to a concrete approach structure and H-flume

Flow meter and water sampling device

EXPERIMENTAL RESULTS FROM PAIRED WATERSHED STUDY

	% Reduction in Tree & grass buffers	% Reduction in grass buffers		
Runoff	15%	23%		
Sediment	30%	28%		
Total P	26%	22%		

(Udawatta et al., 2011)

QUESTIONS AND OBJECTIVES

Questions

- Can we use APEX to simulate upland contour buffers?
- Is the simulated effectiveness of upland contour buffers meaningful?

Objectives

- Calibrate APEX when buffers are and are not present.
- Compare simulated buffer effectiveness to effectiveness obtained from monitoring data.

METHODS

- Calibrate APEX with no buffers (1993-1997)
 - Calibration on Center watershed
 - Validation on West and East watersheds
- Test that model for 1998-2008, during which buffers were present. New delineation is necessary.
- Recalibrate APEX using 1998-2008 data and test on 1993-1997 data.

WATERSHED DELINEATION

 No buffer: follow topography and soils • Buffers: each buffer is a subarea.

RUNOFF AND WATER QUALITY DATA

		Center No-buffer	West No-buffer	East Control No-buffer	Center Upland Tree Buffers	West Upland Grass Buffers	East Control No-buffer	
		1	1993-1997			1998-2008		
Runoff (mm)	Number of events	47	47	47	42	42	42	
Me	Median	13.7	18.9	15.7	16.5	20.5	21.3	
	Range	0.6 - 93.2	0.6 - 141	0.9 - 149	2.0 - 75	0.6 - 109	0.8 - 110	
Sediment (kg ha ⁻¹)	Number of events	43	41	43	30	28	29	
	Median	10.0	14.0	9.0	3.0	3.0	5.0	
	Range	0.3 - 1090	0.2 - 1090	0.4 - 1171	0.3 - 49	0.3 - 37	0.1 - 38	
TP (kg ha ⁻¹)	Number of events	43	41	43	20	20	20	
	Median	0.099	0.106	0.069	0.074	0.08	0.08	
	Range	0.003 - 0.60	0.002-0.83	0.003-0.67	0.008-0.44	0.005-0.63	0.004-0.67	

NO BUFFERS MODEL RESULTS

model validation (East watershed)

BUFFER MODEL RESULTS

PERFORMANCE ACROSS MANAGEMENTS

	NSE Value for the Center watershed			
No Buffer Model	Calibration on the no-buffer period	Validation on buffer period		
Runoff	0.85	0.6		
Sediment	0.51	-19		
TP	0.50	-0.01		
Upland Buffer Model	Calibration on buffer period	Validation on the no-buffer period		
Runoff	0.79	0.82		
Sediment	0.22	0.01		
TP	0.65	0.55		

BUFFER EFFECTIVENESS

	Agrofor buffers	estry
Paired watershed approach based on 2004-2008 monitored events	Runoff	TP
Udawatta et al. (2011) using monitoring data	-15%	-26%
Values simulated with the buffer APEX model	-17%	-28%
Based on March-Nov 2004-2008 APEX simulated daily values		
Paired watershed approach	-22%	-29%
Direct simulation of no buffer conditions with the buffer model	-25%	-28%

DISTRIBUTIONS OF P46 AND P69 WHEN NSC > 0.2 FOR SEDIMENT.

P46	No buffer		With b	ouffers
0.6	378	66%	0	0%
0.75	160	28%	11	6%
0.9	32	6%	160	9 4%
	570		171	

P69	No b	uffer	With buffers	
0.1	0	0%	139	81%
0.2	122	21%	32	19%
0.35	160	28%		
0.6	288	51%		
	570		171	

Greater P 46 value with buffers means higher effectiveness of residues Smaller P 69 value with buffers means lower rate of residue mineralization.

CONCLUSIONS

- APEX can simulate meaningful runoff and P losses from a field with and without upland contour buffers.
- P46 (the effectiveness of residue at reducing erosion) and P69(coefficient adjusting the mineralization rate) need to be adjusted to reflect changing biological processes caused by the conservation practice.
- Some of what we see may be the cumulative long-term effect of no-till rather than the effect of upland contour buffers.
- Improved understanding of these processes will result in process-based equations to calculate the value of these parameters.
- Until then, calibration and uncertainty analysis are necessary to obtain meaningful estimates of practice effectiveness.