

Climate change impacts on crop yield and meteorological, hydrological and

agricultural droughts in semi-arid regions.

Application of SWAT and EPIC model for drought and drought vulnerability assessment

Bahareh Kamali, Karim C. Abbaspour, Hong Yang

umbers of crop OPR-Param	Method	6	nu Default	mbers of EPIC Minimum	2 Maximum	OPR-Param	Method	Default	Minimum	Maximu
Planting-Date	rRelative	•	1	-0.15	0.15	PHU	rRelative 🔻	1	0.0257	0.0257
Planting-Density	rRelative	. •	1	-0.042857	-0.042857	Pesticide	rRelative 🔻	1	1	1
Irrigation-APP	rRelative	. •	1	1	1	Irrigation-Rate	rRelative 🔻	1	1	1
FNP	rRelative	. •	1	-0.4	0.4	FMX	rRelative 🔻	1	-0.008571	-0.008571
BFT0	rRelative	• •	1	-0.128571	-0.128571	P-APP	rRelative 🔻	1	-0.068571	-0.068571
P-Rate	rRelative	• •	1	1	1	K-APP	rRelative 🔻	1	0.017143	0.017143
/ K-Rate	vReplac	• •	40.00	36.224998	36.224998					
		2.	0 -			Á		Best s	imulation	
	Kenva (t/ha)	2. 1. 1.	0 - 8 - 6 - •					Best s	imulation	

Historical evolution of drought in Iran

In 2007, Iran exported nearly 600,000 t of wheat while producing 15 million t

In 2009, it was reported that Iran purchased 6 million t of wheat because of the drought in 2008

Karkheh River Basin (KRB)

- Third largest basin in Iran with area of 51,000 km²
- One of the nine benchmark watershed of the CGIAR challenge program on water and food
- Known as the food basket of country

Uncertainty in hydrological modeling of the study area

Multi level drought identification in KRB

Crop drought vulnerability assessment based on crop modeling using EPIC model

Data for building SWAT model of the region

aquatic rese

000

Model performance before and after calibration

Final ranges of parameter after calibration

The impact of different input data on different water resources components

water resources components are significantly different for different configurations,

Kamali, Yang, Karim C. Abbaspour, "Assessing the Uncertainty of Multiple Input Datasets in Prediction of Water Resources Components", 2017

000

The impact of input data uncertainty on different water resource components

it is prudent for modelers to pay more attention to the selection of input data.

Kamali, Yang, Karim C. Abbaspour, "Assessing the Uncertainty of Multiple Input Datasets in Prediction of Water Resources Components", 2017

Multi level drought assessment in KRB

Meteorological droughts

Standardized precipitation index (SPI) using Precipitation

Hydrological droughts

Standardized runoff Index (SRI) using Discharge

Agricultural droughts

Standardized Soil Water index (SSWI) using soil moisture data

Kamali, B.; Houshmand Kouchi, D.; Yang, H.; Abbaspour, K.C. Multilevel drought hazard assessment under climate change scenarios in semi-srid regions—A case study of the Karkheh River Basin in Iran. *Water.* **2017**, *9*, 241.

Multi-level drought identification in KRB

Agricultural drought: SSWI-12

П

Multi level drought assessment in KRB

 There was 3-month lag between hydrological and meteorological droughts In the northern region, it is due to snow melt
In the southern regions due to routing method

Kamali, B.; Houshmand Kouchi, D.; Yang, H.; Abbaspour, K.C. Multilevel drought hazard assessment under climate change scenarios in semi-srid regions—A case study of the Karkheh River Basin in Iran. *Water.* **2017**, *9*, 241.

Climate change impact on drought frequency and duration in KRB

GCM Name	Institute Full Name
	Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto
Haugem2-es	Nacional de Pesquisas Espaciais)
IPSL-CM5A-LR	Institute Pierre-Simon Laplace
GFDL-ESM2M	NOAA Geophysical Fluid Dynamics Laboratory-Earth System Model
	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research
MIROC-ESM-CHEM	Institute (The University of Tokyo) and National Institute for Environmental Studies
NorESMI-M	Norwegian Climate Centre- Earth System Model

Wheat drought vulnerability assessment

EPIC: Crop yield simulator

EPIC is originally a site-based model

Objective1: Extending its application from site-based to large scales using a user-friendly workspace

Objective 2: Model calibration to validate that crop model is replicating historic period

EPIC+							X
General settings	Operation settings Pa	rameterization	SUFI2 cali	bration			
Linux address	/mnt/project/kamaliba	1					
Windows address	E:\\PHD-SUMUP\\EPIC	+SUFI2				Bro	wse
Project name	Iran1	Resolution		0.5			
Select area	Iran 👻	Select crop		W-Whea	t	•	
Start year	1970	Number of yea	rs	43			
Warm-up years	20	Numbers of ru	ins	10			
Status							
N		N					
Objec	ctive-1	Object	ive-2				

eav

• Selecting different operations from planting to harvesting dates through the interface

Parameterization

Crop parameters **CROP** Param

V WA

V TOPC

DMLA

DLAP1

RLAD

🗖 ALT

CAF

HMX

WAC2

CPY

WSYF

CSTS

PRYF

BN1

BN3

BP2

BK1

BK3

BW2

IDC

FRST2

VPTH

RWPC1

GMHU

PPLP2

STX2

BLG2

FTO

Method

vReplace

vReplace

rRelative

rRelative

rRelative

rRelative

rRelative

rRelative

rRelative

rRelative

vReplace

rRelative

eawag.... aquatic research

- 13 operation parameters ٠
- 56 crop parameter
- **85 EPIC parameters** •

				Operation	paramete	ers									×
anotion nonomatana		tora	Numbers of operation parameters 6			6	Numbers of crop parameters 6 Numbers of EPIC parameters 2								
eralle	лі ра	lame		Total numb	er of nar	rameters	14		85	FPIC	narai	netė	rs		
	-			Total numb	er or par	ameters	14		05		parai	neu	10		
				OPR-Par	am I	EDIC paramet	n.c.u	Minimum	- Waning	OBD B	- Walad	Defeat			
on na	rame	ter		Planting	-Date	CROB Paramete	ers Method	Defer	la Minin	Maria	CROBB	Mathad	Defealt	Minimum	Maria
p pu	unic			Planting	-Density		n Method	Derau	1 Minin	ium Maximum		Method	Default	Minimum	Maximum
				Flanding	Poensie	PARMUI	rRelative	▼ 1.	1	1		rRelative	▼ 2.	1	1
				Irrigation	n-APP	PARM03	vReplace	▼ .3	1	1	PARMU4	rRelative	▼ 1.	1	1
'IC p	arame	eters		FNP		PARMUS	vReplace	5 -	0.487	0.487	PARMU6	rRelative	▼ 1.	1	1
P				RETO	-	PARM07	rRelative	▼ .5	1	1	PARM08	rRelative		1	1
						PARMU9	rRelative	▼ 50.	1	1		rRelative		1	1
				P-Rate		PARM11	rRelative		1	1	PARM12	rRelative	▼ 1.5	1	1
				K-Rate		PARM13	rRelative	• .0	1	1	PARM14	rRelative	▼ .5	1	1
						PARM15	rRelative	▼ 5.0	1	1	PARM16	rRelative	10	1	1
						PARM17	rRelative	• .000	1	1	PARM18	rRelative	▼ 1	1	1
						PARM19	rRelative	• .0	1	1	PARM20	rRelative	▼ .1	1	1
						PARM21	rRelative		1	1	PARM22	rRelative	• .0001	1	1
						PARM23	rRelative		1	1	PARM24	rRelative	▼ .3	1	1
56 CI	ron n	arar	neter	٠		PARM25	rRelative		1	1	PARM26	rRelative		1	1
			never			PARM27	rRelative	▼ 1.	1	1	PARM28	rRelative	▼ 1.25	1	1
								X	1	1	PARM30	rRelative	▼ 1.	1	1
									1	1	PARM32	rRelative		1	1
Default	Minimum	Maximum	CROP Param	Method	Defau	ılt Minimu	ım Maxiı	num	1	1	PARM34	rRelative		1	1
✓ 40.00	36.224998	36.224998	V HI	vReplace	▼ 0.40	0.497	5 0.4	975	1	1	PARM36	rRelative	→ .2	1	1
✓ 25.00	34.299999	34.299999	TBSC	vReplace	▼ 8.00	7.05	7.0	5	1	1	PARM38	rRelative	✓ .0032	1	1
▼ 6.00	1	1	DLAI	rRelative	▼ 0.80	1	1		1	1	PARM40	rRelative	→ 0.	1	1
▼ 15.05	1	1	DLAP2	rRelative	▼ 50.95	5 1	1		1	1	PARM42	rRelative	▼ 1.2	1.1	1.8
▼ 1.00	1	1	RBMD	rRelative	▼ 1.	1	1		1	1	PARM44	vReplace	→ .5	1.320833	1.320833
▼ 3.00	1	1	GSI	rRelative	▼ 0.007	70 1	1		1	1	PARM46	rRelative	✓ .50	1	1
▼ 0.85	1	1	SDW	rRelative) 1	1	_	1	1	PARM48	rRelative	▼ .000012	1	1
▼ 2.00	1	1	RDMX	rRelative	▼ 2.00	1	1		1	1	PARM50	rRelative	• .00	1	1
	1	1	CNY	rRelative	▼ .013	1	1		1	1	PARM52	rRelative		1	1
	1	1	СКҮ	rRelative		32 1	1		1	1	PARM54	rRelative	▼ 5.	1	1
▼ 0.01	0.025833	0.025833	PST	rRelative	▼ 0.60	1	1		1	1	PARM56	rRelative		1	1
- 3.45	1	1	PRVG	rRelative	- 1031	16 1	1		1	1	PARM58	rRelative	→ 0.	1	1
- 80.22	1	1	WCV	Peoplace	- 0.15	0.151	5 0.1	15	1	1	PARM60	rRelative	▼ 2.	1	1
- 0.0440	1	1		Palativa	- 015	1	1		1	1	PARM62	rRelative		1	1
- 01	1	1		-D-L-1	- 0.00	52 1	1		1	1	PARM64	rRelative	▼ .5	1	1
▼ .01	1	1	BPI	rKelative		1	1		1	1	PARM66	rRelative	▼ .01	1	1
▼ 0.0023	1	1	BP3	rRelative		10 1	1		1	1	PARM68	rRelative	20.	1	1
	1	1	BK2	rRelative		20 1	1		1	1	PARM70	rRelative	▼ 0.	1	1
▼ 0.0090	1	1	BW1	rRelative		3 1	1		1	1	PARM72	rRelative	▼ 3.	1	1
	1	1	BW3	rRelative	▼ 0.213	3 1	1		1	1	PARM74	rRelative	→ 1.	1	1
◄ 4.	1	1	FRST1	rRelative	▼ 5.15	1	1		1	1	PARM76	rRelative	→ 0.	1	1
	1	1	WAVP	rRelative	▼ 8.00	1	1		1	1	PARM78	rRelative	→ 0.	1	1
▼ 0.50	1	1	VPD2	rRelative	▼ 4.75	1	1		1	1	PARM80	rRelative	→ 0.	1	1
▼ 0.40	1	1	RWPC2	rRelative	▼ 0.20	1	1		1	1	PARM82	rRelative		1	1
	1	1	PPLP1	rRelative	▼ 4.47	1	1		1	1	PARM84	rRelative	✓ .57	1	1
• 7.77	1	1	STX1	rRelative	▼ 0.12	1	1		1	1					
	1	1	BLG1	rRelative		1	1			I.					
▼ 0.10	1	1	WUB	rRelative		1	1								
- 0.00	1	1	ELT	Relative	- 0.00	1	1								

Automatic calibration: Linking EPIC with SUFI2 (EPIC+)

Input Settings Opera	tion Settings	Parameterizat	on PEPIC-CUP	Output Plots	Sensitivity Anlysis	Drought Indices	ClimateDataAnalysis
Project-Name		/mnt/project/ka	imaliba/				
Project Location		D: PHD-SUMUP	EPIC-CUP2			Brov	vse
EPIC Base-File DataBa	se	D: PHD-SUMUP	EPIC-CUP2\Datab	ase \EpicBaseFile \c	riginalLinux	Brov	vse
Fixed Database		D: PHD-SUMUP	EPIC-CUP2\Datab	ase (FixedData (Glo	bal	Brov	wse
Climate Database		/mnt/project/ka	maliba/Database/(Dimate/WFDEI		Brov	vse
Soil Database		/mnt/project/ka	maliba/Database/S	Soil/EPICSoilWise		Brov	vse
Management Database		/mnt/project/ka	maliba/Database/r	Brow	vse		
				Input Option	IS		
Scenario	SPISSA		resolution	0.5			
Select Area	Whole	•	✓ Select Crop Maize		•		
				Input Option	IS		
Start Year of Simulatio	n	1970	Nu	Number of simulating Years			
Skip Years		10	Nu	Numbers of Iterations			
Total Numbers of Para	neters	14	Nw	Numbers of Operations Parameters			
Numbers of CROPCOM	I Parameters	6	Nw	Numbers of PARAM0810 Parameters			
Numbers of soil Parameters 0							

- Parallel processing
- Running under windows and linux

Case Studies

23

Browse

Browse

(Not Responding)

Press to run Python scrip

The Python-based EPIC (PEPIC) Model (Not Responding)

Project Locat

IPIC Base File I

ent PEPIC-Settings PEFIC-CUP I First Test

D: Bahareh/JEWversion_bah

· Select Crup

D: Wahareh WEW version, bahareh "Database "IpicBasef Ve'sorign

: Bahareh/MEW/version bahareh/Detabase/FixedData/Giob

Sahareh (#Eliliversion_bahareh (Database (Dimate (%FO

Maize

Sorghum

Wheat

Sub-Saharan Africa

R2	P-factor	R-factor
0.42	0.60	1.3

R2	P-factor	R-factor
0.32	0.55	1.1

R2	P-factor	R-factor
0.28	0.68	1.2

Model calibration on provincial level and based on wheat yield

region	Mean Square Error	P-factor	R-factor
NKRB	0.13	0.52	1.1
CKRB	0.073	0.45	1.04
SKRB	0.096	0.55	1.17

GCM Name	Institute Full Name
	Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto
HauGEM2-ES	Nacional de Pesquisas Espaciais)
IPSL-CM5A-LR	Institute Pierre-Simon Laplace
GFDL-ESM2M	NOAA Geophysical Fluid Dynamics Laboratory-Earth System Model
	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research
MIROC-ESM-CHEM	Institute (The University of Tokyo) and National Institute for Environmental Studies
NorESMI-M	Norwegian Climate Centre- Earth System Model

Simelton, E., E. D. G. Fraser, M. Termansen, P. M. Forster, and A. J. Dougill, 2009: Typologies of crop-drought vulnerability: an empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961-2001). *Environ Sci Policy*, **12**, 438-452.

Interaction of DEI-CFI –CDVI during historic period

Climate change impact on CDVI and its components

Summary and conclusion

- Iran has been experiencing extreme drought events over that last two decades;
- Climate change had more severe impacts on agricultural sectors and yield production;
- Agricultural sector is more exposed to drought;
- EPIC+SUFI2 is a practical for crop yield calibration on different scales;
- The results for Sub Saharan Africa and Iran were satisfactory;
- SKRB is more exposed to yield reduction;
- CKRB and SKRB are more vulnerable to drought;

Thanks for your attention

ISNA/PHOTO: HADI JAFARZADEH

Calibration

- Similar structure to SUFI2 in SWAT-CUP
- Latin hypercube sampling
 - **Replacement**: Parameters are changed between maximum and minimum;
 - **Relative:** An existing parameter is multiplied by a relative value defined between a maximum and minimum;
- A python script is prepared for each iteration;
- Considering different objective functions

General procedure performed for calibration

