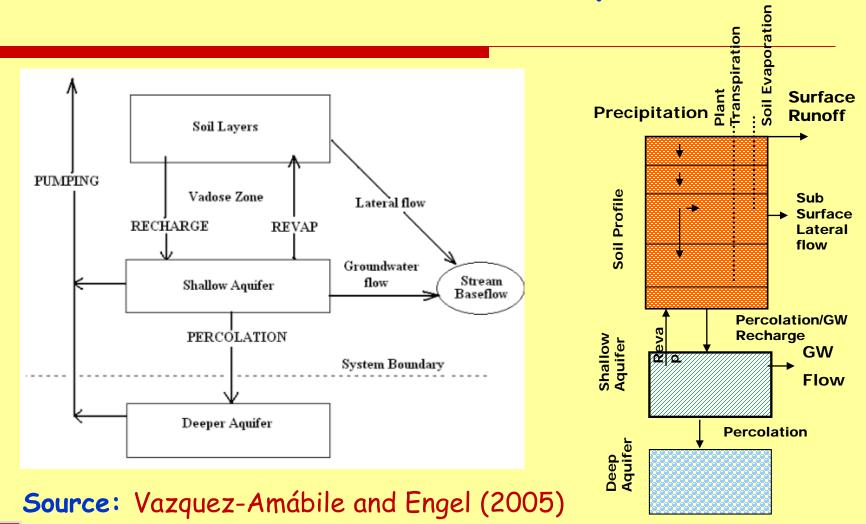
Analytic Element Method (AEM) and its Relevance with Subbasin/HRU concept of SWAT for potential integration of AEM based simple ground water model

> SURFACE RUNOFF

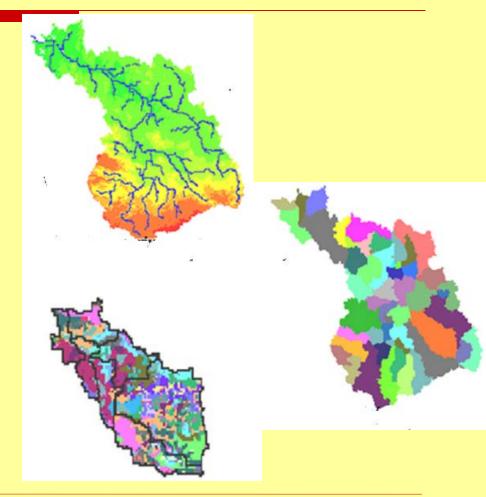
K.Sangeetha, B.Narasimhan Department of Civil Engineering, Indian Institute of Technology, Madras **RIVERS** and LAKES

GROUNDWATER

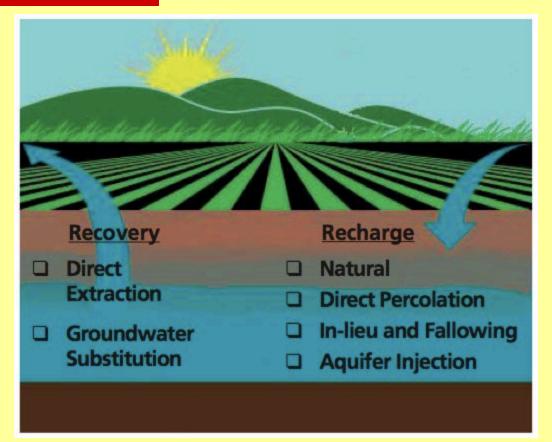

Outline

- Introduction
- SWAT GW Model
- Need for study
- Solution methods for solving GW flow problems
- Analytic Element Method and its Assumptions
- Principle of superposition
- Types and representation of Analytic Elements
- Methodology
- ✤ Example
- Advantages and limitations of AEM
- Applications of AEM

Introduction

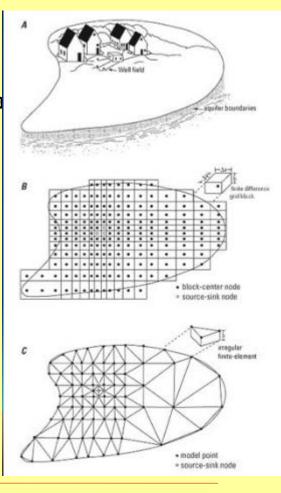

- Streams and Lakes interact with adjacent aquifers, creating complex flow paths in hydrologic cycle.
- Better quantification of water balance components and improved characterization of surface (SW) and ground water (GW) interaction help in improving water resource management
- Several numerical models (FDM/FEM) for ground water modelling is used and coupled with SW model for understanding the SW-GW Interaction.
- This study attempts to integrate Soil and Water Assessment Tool (SWAT) with Analytic Element Method (AEM) for ground water modelling

SWAT Ground Water component


Limitations of SWAT GW model

- SWAT considers each HRU and subbasins as separate 1-D unit interactions between them is not considered
- Spatial locations of each HRU subbasins are not considered
- Lacks in simulating the distribution and dynamics of GW levels and recharge rates for watersheds

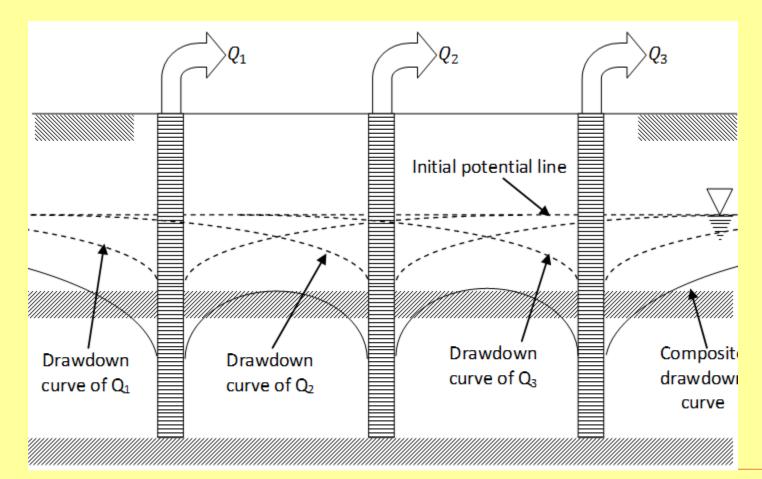
Need for this study


- Conjunctive use of SW-GW resources
- SW and GW interconnected
- Studies are limited in Coupling SW-GW systems
- SWAT coupled with AEM based GW model

Source: Dudley & Fulton (2005)

Solution Methods for Solving Ground Water Flow Problems

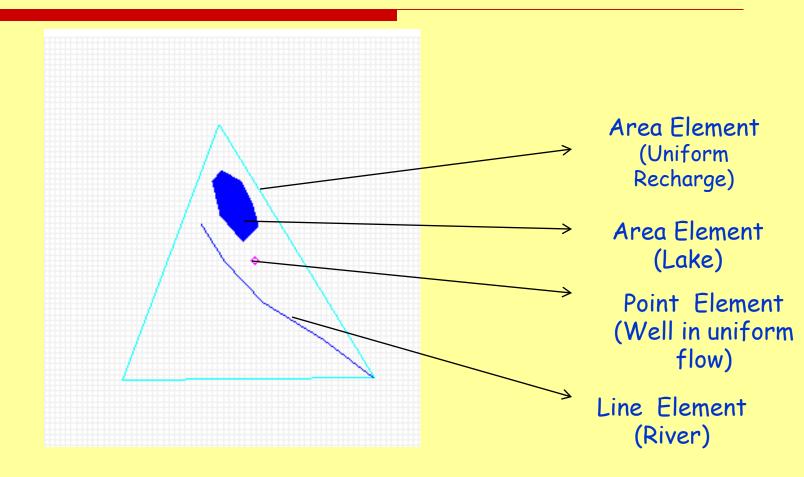
- In order of increasing Complexity :
 - Analytical Solutions : h=f(x,y,z,t) Eg : Theis Equa
 - Analytic Element Method (AEM)
 - Numerical solutions : Finite Difference Method (FDM), Finite Element Method (FEM)
- Each solves the governing equation of GW flow and storage in a different approaches.
- The assumptions and applicablility of the methods differs.


7

Analytic Element Method (AEM)

- AEM (Analytic Element method) proposed by Otto Strack potential theory
- AEM works on superposition of analytic functions called as analytic elements within a <u>grid independent domain</u>
- Each function (elements) can be modelled individually and super imposed based on linearity of laplace equation to obtain full description of the aquifer.
- Appropriately choosing discharge potentials, rather than piezometric heads, the AEM becomes applicable to both confined and unconfined flow conditions as well as to heterogeneous aquifers

12 July 2017


How does principle of superposition work?

12 July 2017

e.g.Theis Solution

Type and Representation of Analytic Elements

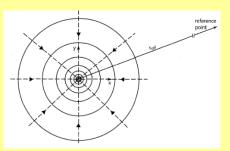
Principle of Superposition in 1D plane

 $\overrightarrow{} Q_{l}/H$

- Consider GW flow in an infinite
 strip to a horizontal equipotential
- Thickness : H
- Length of Streambed L
- Two sections of constant recharge :
 Recharge strip to left N1 and right N2

x= - ∞ , Uniform specific discharge = Q_L/H and x= ∞ , Uniform specific discharge = Q_R/H

 N_{2}

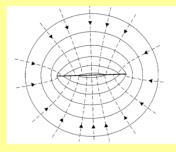

(Contd..)

- Solutions to above problem : superposition of 2 recharge strips and solutions containing uniform flow
- GW flow (Laplace equation) expressed as complex potential function

$$\Omega = \Phi + i\Psi$$

- Whereas Ω(z) = analytic function of a complex coordinate z=x+iy
- Specific discharge potential $\Phi = k\phi$, $\Psi = Stream$
- Complex discharge potential, $W = -\frac{d\Omega}{dx} = q_x iq_y$; qx and qy are x, y components of specific discharge vector

Point Source/Sink (Well Element)

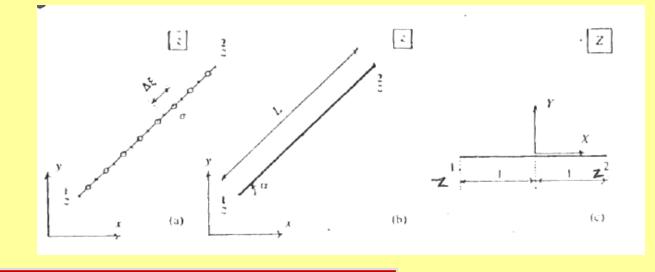


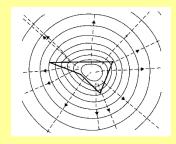
- Withdraw/supply water
- Input : Q, R and its location, Extraction or injection (well) rate
- Losing Streams : Radius (+), discharge (-) ; vice versa for gaining streams
- Dirichlet, Neumann Boundary Condition used

•
$$\Phi = \Re \Omega = \frac{q}{4\pi} \ln|(x - x_w)^2 + (y - y_w)^2| + \Phi_{ref}$$
; $\Psi = \Im \Omega = \frac{q}{2\pi} \arctan(\frac{y - y_w}{x - x_w}) = \frac{q}{2\pi} \theta$

$$\varOmega = \frac{Q}{2\pi} \ln(z - z_w) + \Phi_{\rm ref}$$

Line Source/Sink (Streams)




- Infinite number of point sinks (wells) along a straight line
- Inject or extract a net amount of water from the aquifer
- Losing streams : line sink with a negative sink density ; vice versa for gaining streams
- ✤ <u>Input</u> :
 - Head at beginning and end of a line segment, the resistance, the depth and the width of the river, SW head condition (stage), bottom elevation, width and conductance of underlying bed material

(Contd..)

$$\Omega = \int_{L} \frac{\sigma_{lin}}{2\pi} \ln(z-\delta) d\delta + \Phi_{ref} \qquad \Omega = \frac{\sigma L}{4\pi} \left\{ (Z+1)\ln(Z+1) - (Z-1)\ln(Z-1) + 2\ln\left[\frac{1}{2}(z_2-z_1)\right] - 2 \right\}$$
$$= -\frac{z-\frac{1}{2}(z_1+z_2)}{2\pi} \qquad \Phi = \Theta O \qquad \frac{\sigma L}{4\pi} \left\{ (z+1)\ln(Z+1) - (z-1)\ln(Z-1) + 2\ln\left[\frac{1}{2}(z_2-z_1)\right] - 2 \right\}$$

$$Z = \frac{z_{-2}(z_1 + z_3)}{\frac{1}{2}(z_2 - z_1)} \qquad \Psi = \Re \Omega = \frac{\pi}{4\pi} \{-X \ln |z_{-1}| + Y\theta + \ln |z_{-1}| + 2m - \frac{1}{2} - \frac{1}{2}\} \\ \Psi = \Im \Omega = \frac{\sigma L}{4\pi} \{-X(\theta_2 - \theta_1) + \theta_1 + \theta_2 + 2\alpha\}$$
 (Eg: Along the X axis and Y=0)

Area Source/Sink

- Analytic, non-harmonic functions utilized for representing extraction or infiltration over the area bounded by polygons
- By Combination Of Distributed Doublets And Distributed Line Sinks
- Input : location of the lake boundary, uniform recharge/leakage

$$\Omega_{c} = \sum_{j=1}^{n} \Omega_{j}^{c} + \frac{Q_{o}}{2\pi}^{c} \ln (z - z_{1}^{c})$$

$$\Phi i = \{\frac{1}{2} \Upsilon[(x - x_{o}^{c})\cos \alpha_{1} + (y - y_{o}^{c})\sin \alpha_{1}]^{2}\} + \Omega_{c}$$

Complex potential, Boundary conditions and the solution

- All potential represent one particular feature in the aquifer
- Complex potential where it is known is noted as U and the parameters are unknown is noted as V
- Above equations written as

 $\boldsymbol{\Phi}\left[\boldsymbol{\varphi}(\mathbf{x}_{c},\mathbf{y}_{c})\right] = \mathbf{U}(\mathbf{x}_{c},\mathbf{y}_{c}) + \mathbf{V}(\mathbf{x}_{c},\mathbf{y}_{c})$

 $\mathbf{V}(\mathbf{x}_{c},\mathbf{y}_{c}) = \sum_{nl} \wedge_{i} A_{i}(\mathbf{x}\mathbf{c},\mathbf{y}\mathbf{c}) + \mathbf{C}$

where Λ_i = unknown strength or intensity like unknown infiltration from lake; i=no of elements with unknown narameter A_i = accometry of the element

(Contd..)

Equations derived from special case of Girinski potential $\Phi G = \int_{z_1}^{z_2} (k(z)(\emptyset - z)dz)$

For Unconfined aquifer

$$\Phi = \frac{1}{2}kh^2 = \frac{1}{2}k(\phi)^2$$
, $\phi \leq H$

For confined aquifer

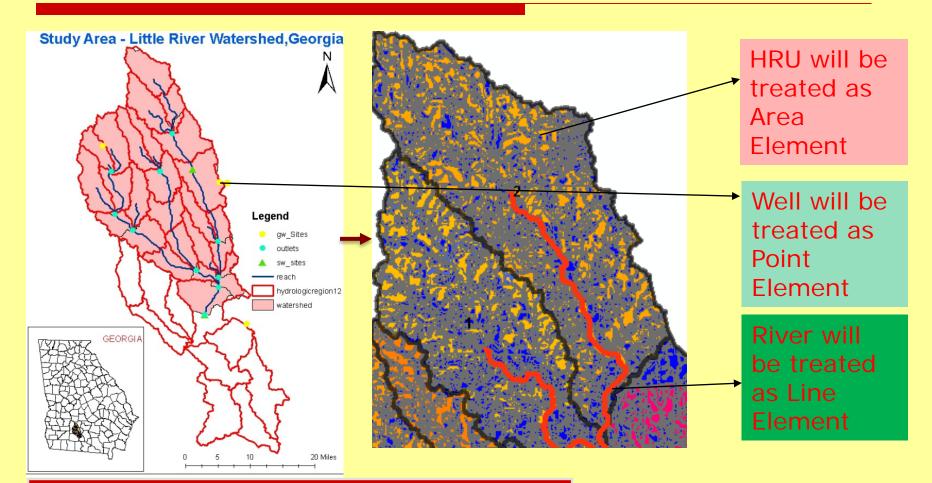
$$\Phi = kH(\Phi) - \frac{1}{2}kH^2 \quad \Phi \ge H$$

Equations valid :

$$\nabla^2 \Phi = 0 \text{ or } \nabla^2 \Phi = 0; \nabla^2 \psi = 0$$
$$\frac{\partial \psi}{\partial x} = -\frac{\partial \varphi}{\partial y} \text{ and } \frac{\partial \psi}{\partial y} = \frac{\partial \varphi}{\partial x}$$

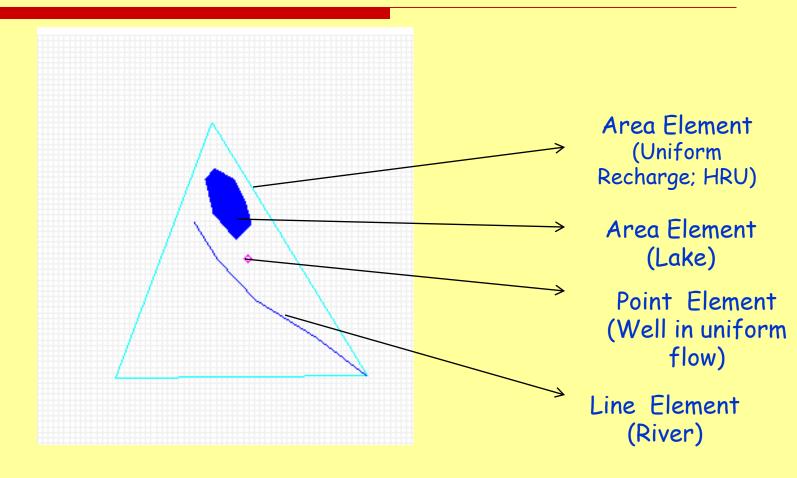
Examples : No flow condition, uniform flow condition, Vertical inflow of water in an infinite aquifer

12 July 2017


Applications of AEM

- Where there exists many surface water features or other structures (wells) influence/determine the GW flow over the AOI/ joint effects with corresponding elements
- Sharp variation in the GW levels , Eg : around wells or well field as the method can model both local and regional effects rather accurately
- Well head and capture zone delineation
- Local and Regional GW modelling

Input data to AEM

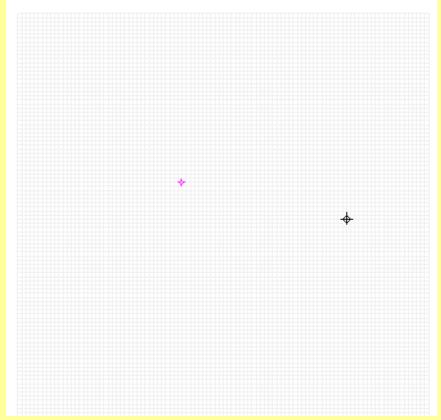

- Base Elevation Soil borings
- Thickness of aquifer Soil borings
- Hydraulic conductivity Pump test, slug test
- Porosity from literature
- Boundary conditions

SWAT Input to AEM Input

12 July 2017

Example in VISUAL AEM

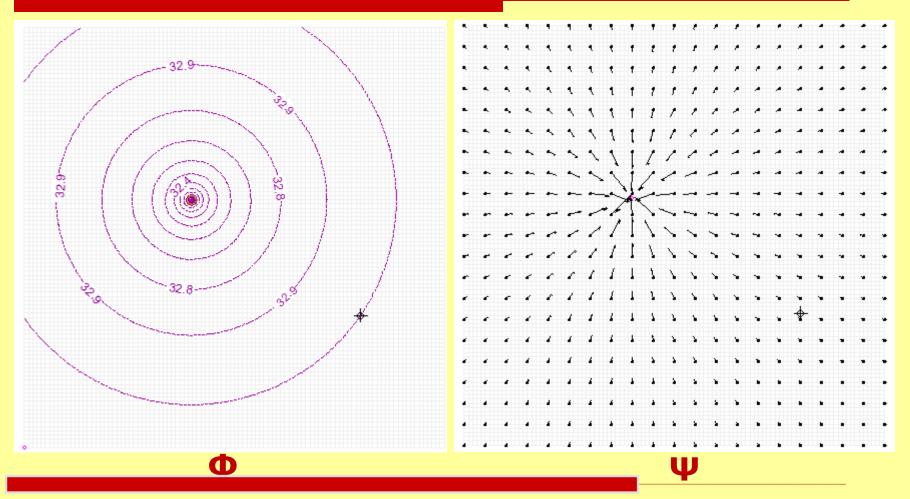
Step 1 : Enter Aquifer Properties


📥 Aquifer Properties		X
Aquifer System Number of Layers: Topmost Base Elevation [m]: O Total Aquifer Thickness [m]: Effective Transmissivity [m²/d]: 0.0		- 100.0[m]
Layer / Aquitard Properties Level 1 Name Aquifer Conductivity [m/d]: Thickness [m]: Porosity [-]: 0.3 Specific Storage [1/m]: 0	K=1.00e0[m/d]	
	Add Layer Remove Lay	
 Saltwater Intrusion (Single Layer Only) Vertical X-Section (Single Layer Only) 	ОК	

Step 2 : Enter Boundary Conditions

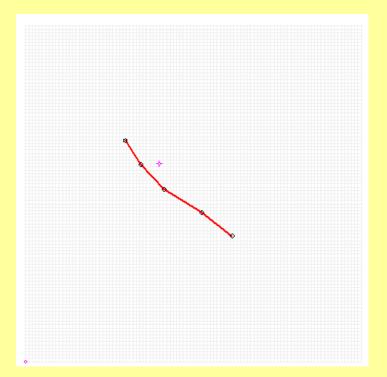
Far Field Condition	ns				
Far Field Hints					
If using a reference point, try to use it outside of the domain of interest. The reference point will have no effect in a well constructed, well-bounded model. Use the net extraction boundary condition only if head-specified elements (Lakes, rivers) exist in the model.					
Condition					
Reference Point					
C Zero Net Extraction					
Regional Flow Trend					
 Gradient Uniform Flow 	Gradient (m/m): 0				
	Angle [deg]:				
	Advance	ed OK			
	X Y	Head [m]			
Reference Point: far	far	average			
Digitize Point Place Far Away (Default)					

Step 3 : Element Generation

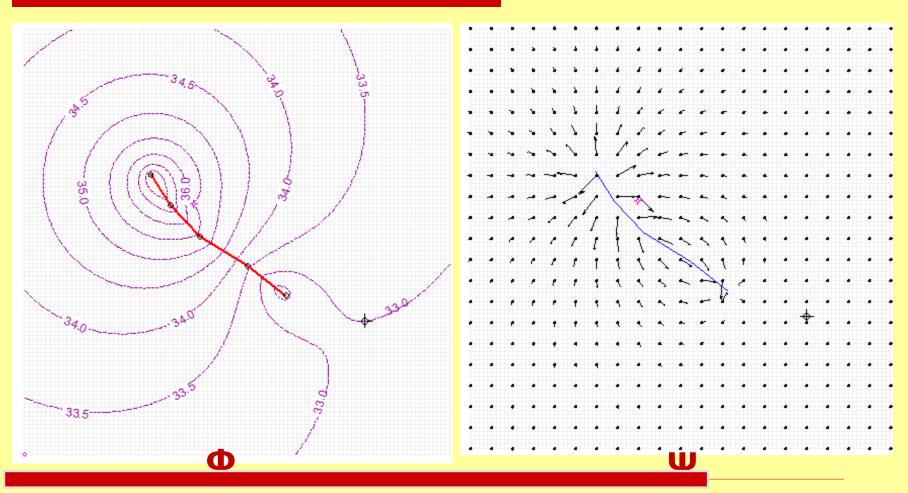

Well Element

Input :

Extraction Well Discharge : 50 m³/d Well radius :0.1 m Well location : x = 39.8109 y = 58.956


Head Distribution and Flow vectors

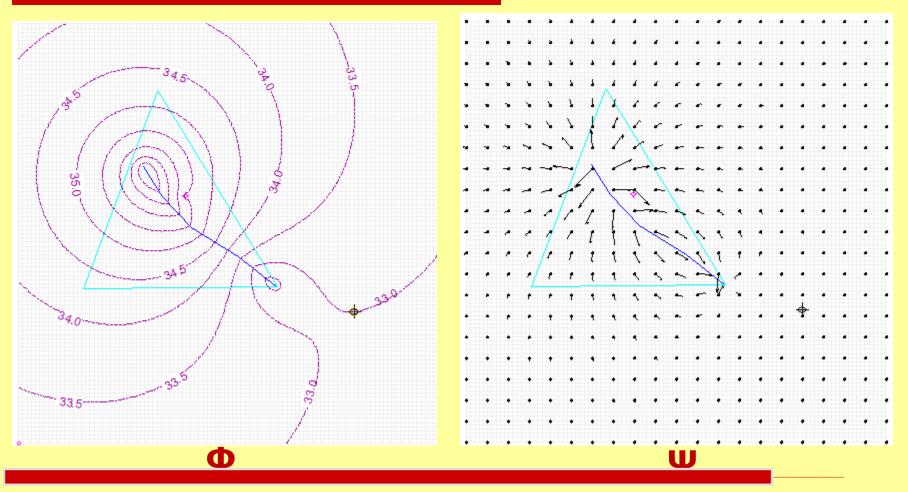
(Contd..)


Line Element

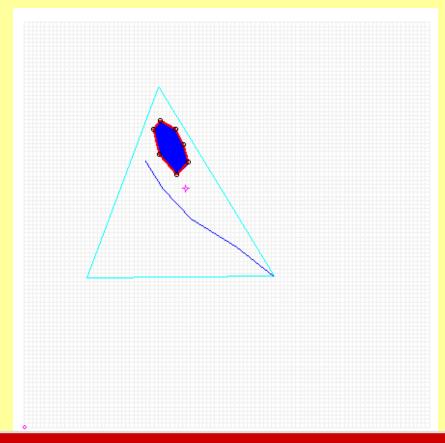
Input : Head Specified B.C


ID	×	Y	Head (m)
1	61.5522	37.4537	32
2	52.4734	44.3822	33.58
3	41.2444	51.3107	35.42
4	34.3159	58.7171	36.82
5	29.7765	65.8845	38.0

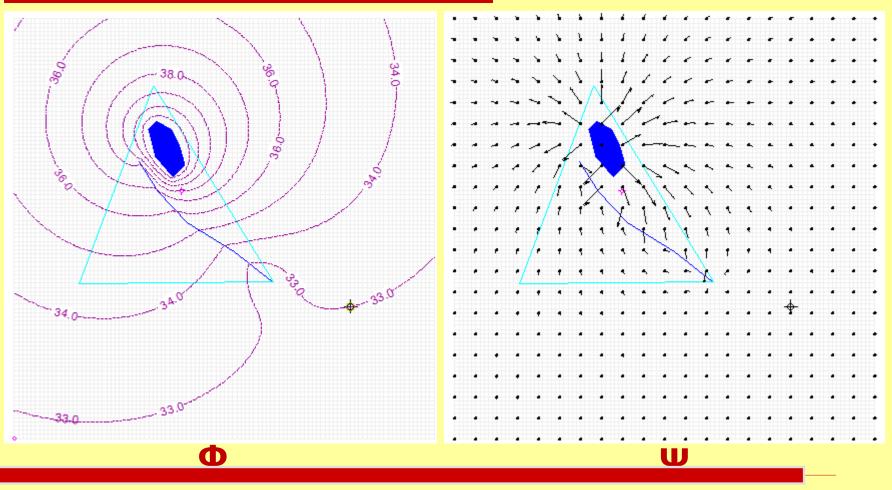
Head Distribution and Flow vectors

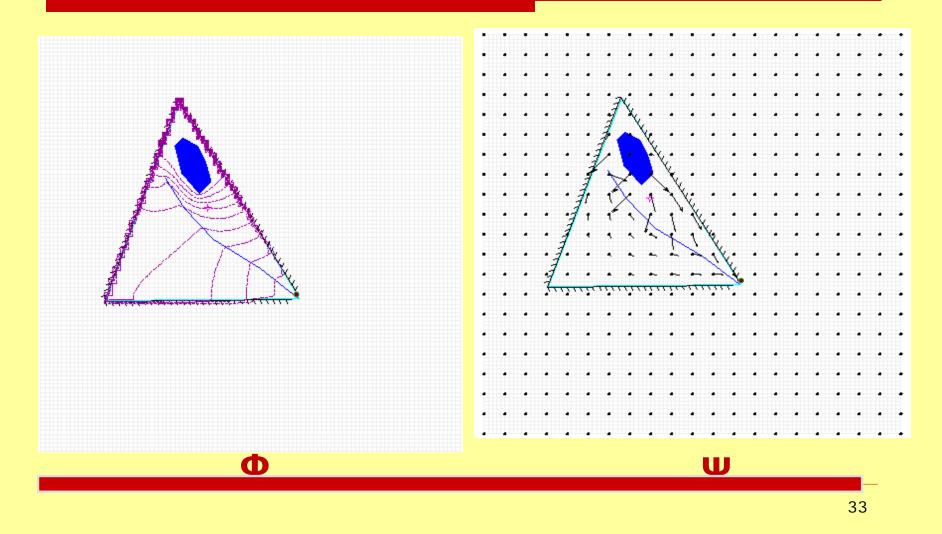

Area Element

Input :


Uniform Recharge: 0.0017 m/d

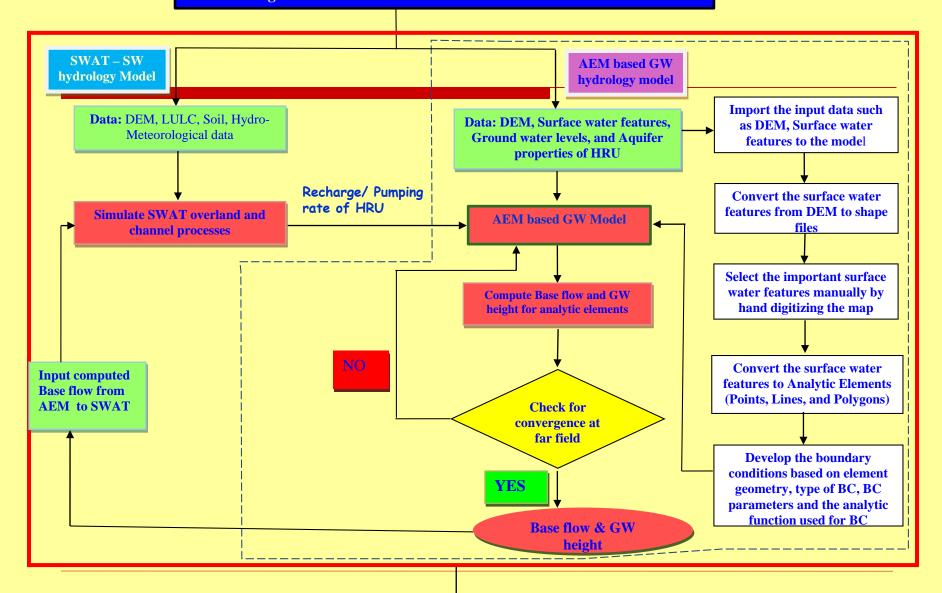
Head Distribution and Flow vectors


Area Element -Lake


Input :

Elevation specified lake Lake elevation : 42 m

Head Distribution and Flow vectors



Head Distribution and Flow vectors in NO FLOW boundary

Methodology

Integrated SW & GW Model for water resource Assessment

Flow Hydrograph

Advantages of AEM

- Scale Independence
- Absence of grid
- Flexibility in model domain
- Computational time and less storage capacity requirement
- No need of any conversion for running the GW model
- Better Solution solvers and matrix schemes compared to FDM/FEM methods
- Continuity of flow is assured -the heads and GW velocities computed by continuous space at any point in the flow domain

Limitations of AEM

- Steady state, limited models developed for transient conditions
- Two dimensional
- Horizontal layers with constant thickness
- Homogeneity, isotropic soil
- Applicable when the equations are linear
- No vertical recharge from infiltration or leakage