

How to improve the representation of nitrate processes and their dynamics in ecohydrological models?

Nicola Fohrer, Marcelo Haas, Matthias Pfannerstill and Björn Guse

Motivation

 Nitrate entry in water bodies is one of the most pressing problems in agricultural watersheds.

 The process representation is highly complex and needs a sound parametrisation to develop realistic BMP's

Motivation

- Improved understanding of nitrate process representation by
 - Temporal sensitivity analysis of nitrate parmameters
 - Simultaneous calibration of runoff and nitrate processes

- Adding information to the calibration process by using FDG and NDC Hydrology and Water Resources Management – Fohrer et al., SWAT Conference 2017

Test catchment: Treene river in Northern Germany

- 481 km²
- Treia
- Lowland catchment
- Dominated by agricultural land use

Quelle: LVERMA, 2004. Aus Guse et al. (2014), adapt. von Haas (2015).

Nitrate cycle in the SWAT-Model

PARAMETER NAME	CODE
Concentration of nitrogen in rainfall	RCN
Nitrate percolation coefficient	NPERCO
Denitrification exponential rate coefficient	CDN
Denitrification threshold water content	SDNCO
Rate factor for humus mineralization of active organic nitrogen	CMN
Nitrogen uptake distribution parameter	N_UPDIS
Half-life of nitrate in shallow aquifer	HLIFE_NGWfsh
Half-life of nitrate in shallow aquifer	HLIFE_NGWssh

TEMPORAL SENSITIVITY ANALYSIS

Temporal dynamics of nitrate prameters in a daily resolution

- Temporal dynamics of parameter sensitivity (TEDPAS), (Reusser et al., 2011; Guse et al., 2014)
 - Identification of the dominant nitrate parameter/process for every day
 - Global sensitivity analysis with the FAST-Method (Fourier amplitude sensitivity testing)
 - Sensitivity varies between 0 and 1

Nitrate percolation coefficient (NPERCO) and uptake by plants (N_UPDIS)

• NPERCO controls the share of seepage of nitrate and the share in surface runoff. N_UPDIS controls the plant uptake from the soil.

Temporal sensitivity of NPERCO (daily)

Daily sensitivity of N_UPDIS and Nitrate uptake of plants (*NO3Crop*)

N_UPDIS is linked to plant growth and thus shows a strong seasonality.

IMPROVED CALIBRATION PROCEDURE

- <u>Multivariable</u>: runoff + nitrate at the same time
- <u>Multi-criteria</u>: classical model efficiency measures + signature measures
- Flow duration curve (FDC) and nitrate duration curve
- (NDC)
 - **5FDC** Method (Pfannerstill et al., 2014):
 - Separate evaluation for every FDC segment
 - **5NDC** Method (Haas et al., 2016):
 - Efficiency measure calculated for every NDC segment

Multi-variable und multi-criteria calibration

Best model (ED_Total) for runoff and nitrate load

Best model runs

TEMPORAL ANALYSIS OF BMP'S

Analysis of BMPs

Haas et al., 2017, JEMA

Reduction of nitrate by single BMPs

- Simulated BMPs
 - Buffer strips (BS)
 - 1,5 m; 3 m; 5 m; 6 m
 - Reduction of fertilizer (FR)
 - -15% and -30%
 - Increase of pasture (PLI)
 - +10% and +20%
 - less silage mais (RYC)
 - -50%

Seasonal reduction of nitrate loads caused by BMP's

BMP combination matrix

TEMPORAL ANALYSIS OF BMP'S

Main messages

- TEDPAS helps to identify WHEN a parameter is sensitive
- The application of different performance measures + signature measures (FDG/NDG) leads to a more balanced calibration
- NDC can be used to analyse the efficiency of BMPs
- Combination matrices of BMP's can support desicion making

Thank you for your attention!

mhaas@hydrology.uni-kiel.de

Haas, M., B. Guse and N.Fohrer, (2017): Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of environmental management Volume: 196 Pages: 347-364 Published: 2017-Jul-01

Haas, M., Guse, B., Pfannerstill, M. & Fohrer, N. (2016): A joined multi-metric calibration of river discharge and nitrate loads with different performance measures, *J. Hydrol.*, *536*, 534-545, doi:10.1016/j.jhydrol.2016.03.001.

Haas, M., Guse, B., Pfannerstill, M. & Fohrer, N. (2015): Detection of dominant nitrate processes in ecohydrological modelling with temporal parameter sensitivity analysis. Ecol. Model. 314: 62-72, doi:10.1016/j.ecolmodel.2015.07.009.