6/28/2017

2017 International SWAT Conference

Warsaw, Poland

Hydrologic modeling of sparsely gauged West African river basins using SWAT - a remote sensing approach -

Thomas Poméon¹, Bernd Diekkrüger¹, Jürgen Kusche², Annette Eicker³, Anne Springer²

¹ Department of Geography, University of Bonn, Germany

² Department of Geodesy and Geoinformation, University of Bonn, Germany

³ Geodäsie und Ausgleichsrechnung, HafenCity Universität Hamburg, Germany

Contents

- 1 Introduction
- 2 Model inputs
- 3 Model results and multi-objective validation approaches
- 4 Conclusion and outlook

1 Introduction

- Water is a crucial natural resource in West Africa, where large parts of the population depend on rain-fed agriculture
- Hydrologic modelling is an important tool to aid in water resource management
- Temporal and spatial observations are necessary to accurately model a watershed
- Ground-based observation networks are sparse

1 Introduction

Can we build a model using remotely-sensed data? Can remotely-sensed data be used to further validate the model?

TERRA

AQUA

SMAP

SMOS

GRACE

SRTM

TRMM

ENVISAT

1 Introduction

- The COAST project (Studying changes of sea level and water storage for coastal regions in West Africa using satellite and terrestrial data sets)
- Research area:

Layer	Product
Digital Elevation Model	 Hydrosheds (2000) - hydrologically corrected SRTM - 90 or 500m resolution WWW WILL WARK OF THE SECOND SECO
Landuse and Landcover	Landscapes of West Africa (2013) - based on local data and remote sensing - 2000 m resolution - 25 landuse classes WING REAL PROFERENCE IN INCLUSION
Soil	HWSD (2012) - 1000 m resolution - many attributes available

Basin	No. of Subbasins	Area (Mio. km^2)	Average Subbasin (km^2)
South	712	0.63	889
West	630	0.56	887
Niger	811	2.2	2770
TOTAL	2153	3.44	1597

- 500 km² minimum drainage threshold (1500 km² for Niger)
- Dominant landuse, soil and slope were used for HRU delineation

< 300

> 300 - 600

> 600 - 900

- 500 km² minimum drainage threshold (1500 km² for Niger)
- Dominant landuse, soil and slope were used for HRU delineation

Climate Input	Product		Details	
Precipitation	CMORPHv1 CRT	NO ATMOSPHERE NORR	0.25° daily	
Temperature	MERRA v2	ASA	0.5° daily	
Relative humidity, windspeed, radiation	CFSR	NO ATMOSPHERE DOAR ATMENT OF COMMON	0.31° daily	

12 reservoirs added from GRanD database (2008)

11

 Discharge data was acquired from the GRDC, AMMA-CATCH, and local cooperation

• A total of 64 stream gauges were used for calibration

- Custom plant management patterns were developed to better reflect tropical plant growth
- Calibration was performed using Sequential Uncertainty Fitting (SUFI2) routine in SWAT-CUP
- The model was calibrated at a monthly time step

Warm-up	Calibration	Validation
1996-1997	first $\frac{2}{3}$ of discharge data	last $\frac{1}{3}$ of discharge data
	total simulation period:	1996-2013
	see also Abbaspour et	al. 2015

Sensitivity analysis

- Parameters influencing streamflow using realistic ranges (Literature)
- Iterate using Kling-Gupta Efficency (∞ < KGE \leq 1) (Gupta et al. 2009)
- Remove non-sensitive parameters (p_s > 0.05)

Calibration/ validation

- Iterate 3-4 times (500 runs)
- Validate (500 runs)

Multi-objective validation

 Validate furter parameters using remote-sensing data

Calibration results:

Validation results:

 Validating model actual evapotranspiration using MODIS MOD16 data

Basin	Pearson's r	R^2	р	PBIAS	KGE	NSE
South	0.95	0.90	< 0.001	-6	0.55	0.63
West	0.95	0.90	< 0.001	14.1	0.81	0.85
Niger	0.97	0.93	< 0.001	2.3	0.60	0.74
AVERAGE	0.96	0.91		3.5	0.65	0.74

• Validating model soil moisture using esa CCI 3.2 data

Basin	Pearson's r	R^2	р
South	0.92	0.84	< 0.001
West	0.89	0.79	< 0.001
Niger	0.91	0.83	< 0.001
AVERAGE	0.91	0.82	

• Validating model leaf area index using MODIS MOD15A2 data

universität**bonn** Geographie

	Wi	th mar	nagement		With	out ma	nagement	
Basin	Pearson's r	R^2	р	PBIAS	Pearson's r	R^2	р	PBIAS
South	0.52	0.27	< 0.001	-13.7	-0.50	0.25	< 0.001	676
West	0.64	0.41	< 0.001	-42.2	-0.45	0.20	< 0.001	630.7
Niger	0.70	0.49	< 0.001	-33.6	-0.46	0.21	< 0.001	418.9
AVERAGE	0.62	0.39		-29.8	-0.47	0.22		575.2

universität**bonn** *Geographie*

Basin	Pearson's r	R^2	р	PBIAS	KGE	NSE
South	0.45	0.20	< 0.001	-93	-0.11	0.12
West	0.47	0.20	< 0.001	-117	-3.6	0.22
Niger	0.67	0.44	< 0.001	-111	-2.6	0.42
AVERAGE	0.53	0.28		-107	-2.10	0.25

universität**bonn** *Geographie*

Basin	Pearson's r	R^2	р	PBIAS	KGE	NSE
South	0.45	0.20	< 0.001	-93	-0.11	0.12
West	0.47	0.20	< 0.001	-117	-3.6	0.22
Niger	0.67	0.44	< 0.001	-111	-2.6	0.42
AVERAGE	0.53	0.28		-107	-2.10	0.25

• Validating model total water storage using war and GRACE data

universität**bonn** *Geographie*

South

200

SWAT

GRACE

Basin	Pearson's r	R^2	р	PBIAS	KGE	NSE
South	0.45	0.20	< 0.001	-93	-0.11	0.12
West	0.47	0.20	< 0.001	-117	-3.6	0.22
Niger	0.67	0.44	< 0.001	-111	-2.6	0.42
AVERAGE	0.53	0.28		-107	-2.10	0.25

4 Conclusion and Outlook

- Remote sensing offers an inexpensive opportunity to model sparsely gauged catchments
- Some temporal measurements are still needed for calibration
- Multi-objective validation approaches deliver promising results and may be used to improve parametrization
- Inner Niger Delta will be added and plant growth revised
- Further investigate gauging stations and revise initial parameters
- Combined calibration using Q and ETa

Looking for info on:

- Remote-sensing data?
- Data preparation?
- netCDF?
- R?

Check out the COAST Online Tutorial/Workshop. It's free! Come talk to us or write an e-mail to: thomas.pomeon@uni-bonn.de

	Calibration (KGE > 0)					Validation (KGE > 0)				
Basin	p Factor	r Factor	R^2	PBIAS	KGE	p Factor	r Factor	R^2	PBIAS	KGE
South	0.42	0.30	0.50	10.81	0.48	0.44	0.35	0.65	17.21	0.51
West	0.63	1.03	0.71	4.58	0.58	0.57	2.03	0.72	34.05	0.44
Niger	0.32	0.38	0.52	12.43	0.44	0.25	0.34	0.74	23.94	0.51
AVERAGE	0.46	0.60	0.58	9.27	0.50	0.42	0.91	0.70	25.07	0.48

Me	ost sensitive paramet	ers
South	West	Niger
CN2 (LULC)	CN2 (LULC)	CN2 (LULC)
SOL AWC (TEX)	SOL AWC (TEX)	SOL AWC (TEX)
SOL BD (TEX)	SOL BD (TEX)	SOL BD (TEX)
EPCO		EPCO
ESCO (LULC)	ESCO (LULC)	ESCO (LULC)
GW GELAY	GW GELAY	GW GELAY
GWQMN	GWQMN	GWQMN
RCHRG DP	RCHRG DP	-
GW REVAP	GW REVAP	GW REVAP
REVAPMN	REVAPMN	REVAPMN
ALPHA BF		
CANMX (LULC)		CANMX (LULC)
RES RR (RES)		
	SOL K (TEX)	
	RES K (RES)	
	× /	EVRSV (RES)

The Soil and Water Assessment Tool (SWAT)

- Mainly physically-based, semi-distributed, continuous-time, basin-scale model
- Designed to predict impacts of management on water supplies
- Major components are: hydrology, weather, soil, plant growth and reservoirs

• Developed especially for use in undergauged catchments

Geogra

universität**bonn**

$$\mathsf{KGE} = 1 - \sqrt{(r-1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}$$

where: r is the correlation, α is the relative variability and β is the bias in the observed and simulated variables. The term within the root describes the Euclidian distance from the ideal point.

$TWS^{t} = P^{t} + SW^{t-1} + (WYLD^{t-1} - WYLD^{t-1}_{outlets}) - ET^{t} - DA_{RCHG^{t}}$

where: *TWS* is the total water storage at timestep *t*, *P* is precipitation, *SW* is soil water, *WYLD* is water yield, *ET* is evapotranspiration and *DA_RCHG* is the deep aquifer recharge

- Sensitivity analysis was performed for parameters influencing flow using suggested, realistic ranges
- Non-sensitive parameters (p_s > 0.05) were removed from the selection
- For model optimization, the Kling-Gupta Efficiency (Gupta et al. 2009) was used (- ∞ < KGE ≤ 1)
- Further validation approaches using remote-sensing data were explored

