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 community-driven
modelling effort 

 bringing together 
impact models
across sectors and 
scales 

 to create consistent 
and comprehensive 
projections of the 
impacts of different 
levels of global 
warming

ISI-MIP
Inter-Sectoral Impact Model Integration and Intercomparison Project (Phase 2a)

coordinated by

Focus regions for catchment-scale hydrological modelling
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 1.02 106 km²

 large elevation range 

 Amazonian lowlands: tropical 
rain forest

 Andean region: montane 
forests, shrubland, grassland

 unreasonably high runoff 
coefficients (R / P) for 
montane subbasins

Upper Amazon BasinMOTIVATION

 errors in the data?

R: 5-10% (Filizola et al., 2009)

P: (WFDEI*) huge uncertainty!

⇒ (1) complex terrain

⇒ (2) cloudwater interception

* WFDEI: WATCH Forcing Data methodology applied to ERA-Interim data (Weedon et al., 2014)
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Problem 1: Complex terrain Average daily precipitation (mm)
(1998-2008)

 Weedon et al. (2014)

 global 0.5° grid (used in ISIMIP2)

 daily resolution

 basin-wide annual mean (2132 mm) 
is close to ground-based HYBAM 
product (2143 mm)

 Nesbitt and Anders (2009)

 0.05° grid between 36° N/S

 climatology (only average rates!)

 annual mean too low (1707 mm), but 
gradients are resolved more reasonably

calculated from 
TRMM PR 2A25 
including error 
model from sub-
sampling the TMPA 
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Problem 2: Cloud water interception
in tropical montane cloud forests

CWI varies strongly and can reach values of more 
than 1000 mm yr-1 (e.g. Bruijnzeel et al., 2011)

Clark et al. (2014) calculated a cloud water 
contribution of 316 ± 116 mm (or 11 ± 4%) to annual 
streamflow for the Kosñipata catchment in the 
eastern Peruvian Andes using an isotopic mixing 
model

Cloud water interception (CWI) is an unaccounted 
source of water

Source: Mulligan (2010)
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METHODS Adjustment of WFDEI data
(1) TRMM correction

TRMM average precipitation rate (mm/day in 1998-2008), 0.05° grid

WFDEI average precipitation rate (mm/day in 1998-2008), 0.5° grid
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METHODS
(1) TRMM correction

Step 1:
Aggregate 
TRMM to 0.5°

TRMM average precipitation rate (mm/day in 1998-2008), 0.5° grid

WFDEI average precipitation rate (mm/day in 1998-2008), 0.5° grid

Adjustment of WFDEI data
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METHODS
(1) TRMM correction

TRMM normalized (TRMM_norm)

WFDEI normalized (WFDEI_norm)

Step 2:
Divide grid
cell values
by basin
average

0.003

0.008

Adjustment of WFDEI data
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METHODS
(1) TRMM correction

TRMM correction factors (α)

Step 3: 𝛼𝛼𝑖𝑖,𝑠𝑠 =
TRMM_norm𝑖𝑖,𝑠𝑠

WFDEI_norm𝑖𝑖,𝑠𝑠

𝑖𝑖: individual 0.5° grid cell
𝑠𝑠: season

WFDEI_TRMM𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑠𝑠WFDEI𝑖𝑖,𝑠𝑠,𝑡𝑡Step 4:

𝑡𝑡: day

Adjustment of WFDEI data
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METHODS
(2) CWI correction

Cloud forest coverage

Source: Mulligan (2010)

β = aggregated (0.5°) 
coverage as fraction
between 0 and 1

CWI correction factor 1: β

CWI correction factor 2:
γ = fraction of CWI on 
precipitation (constant)

Two scenarios:
γ = 0.15, γ = 0.5

WFDEI_CWI𝑖𝑖,𝑡𝑡 = (1 + 𝛾𝛾 𝛽𝛽𝑖𝑖)WFDEI𝑖𝑖,𝑡𝑡

WFDEI_TRMM_CWI𝑖𝑖,𝑡𝑡 = (1 + 𝛾𝛾 𝛽𝛽𝑖𝑖)WFDEI_TRMM𝑖𝑖,𝑡𝑡

Adjustment of WFDEI data
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METHODS Test with hydrologic model ensemble

Hydrologic models (uncalibrated):
• HBV model (Bergström, 1995)

• mHM (Kumar et al., 2013; Samaniego et al., 2010)

• SWAT (Arnold et al., 1998; modified for tropical 
plant growth: Strauch and Volk, 2013)

• SWIM (Krysanova et al., 1998)

• WaterGAP3 (Verzano, 2009)

Input precipitation datasets:
• WFDEI
• WFDEI_CWI15
• WFDEI_CWI50
• WFDEI_TRMM
• WFDEI_TRMM_CWI15
• WFDEI_TRMM_CWI50

Can we achieve better model performance with adjusted precipitation?

Simulation period:
1998 – 2010

6 datasets x
5 models x
9 gauges =
270 simulation
results
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RESULTS
Simulations using WFDEI precipitation

Simulations using adjusted precipitation
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RESULTS
Nash-Sutcliffe efficiency (NSE) for
the ensemble mean

Amazonian lowland

Andean region
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CONCLUSIONS

…is simple but plausible, accounting for complex terrain gradients and/or 
cloud water interception (but not for temporal dynamics!)

…is based on freely available tropics-wide data

…generally increased model performance in the UAB (but differently across 
gauges)

…should be transferable to other tropical montane regions

Our approach to adjust daily precipitation data…

Unrealistically high R/P coefficients point to errors in the data
…assuming stationarity of long-term water storages, e.g. glaciers!



THANK YOU
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 TRMM corrected precipitation

APPENDIX

EQUATIONS

 CWI corrected precipitation

𝑊𝑊𝑇𝑇𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑠𝑠𝑊𝑊𝑖𝑖,𝑠𝑠,𝑡𝑡

𝑊𝑊𝑖𝑖,𝑡𝑡
′ = (1 + 𝛾𝛾 𝛽𝛽𝑖𝑖)𝑊𝑊𝑖𝑖,𝑡𝑡 𝑖𝑖: individual 0.5° grid cell

𝑠𝑠: season (DJF, MAM, JJA, or SON)
𝑡𝑡: day
𝛼𝛼: TRMM correction factor 
𝑊𝑊: WFDEI precipitation
�𝑇𝑇: average daily precipitation rate (mm) of TRMM
�𝑊𝑊: average daily precipitation rate (mm) of WFDEI
𝑁𝑁: total number of all grid cells in the UAB (405)
𝛾𝛾: CWI correction factor 2 (CWI fraction on P, 0.15 or 0.5)
𝛽𝛽: CWI correction factor 1 (cloud forest coverage)

 TRMM and CWI corrected precipitation

𝑊𝑊𝑇𝑇𝑖𝑖,𝑡𝑡
′ = (1 + 𝛾𝛾 𝛽𝛽𝑖𝑖) 𝑊𝑊𝑇𝑇𝑖𝑖,𝑡𝑡
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APPENDIX

Spatial
distribution
of adjusted
precipitation
(mean) 
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APPENDIX
Evapotranspiration
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APPENDIX
Evapotranspiration
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