SWAT Global Impacts

Philip W. Gassman¹, Jeffrey G. Arnold², Raghavan Srinivasan^{3,} Samira Akhaven⁴, Maryam Mehrabi⁵, Karim Abbaspour⁶, Danielle Bressiani⁷

¹Center for Agricultural and Rural Development, Iowa State Univ., Ames, IA, USA

 ²USDA-ARS, Grassland, Soil and Water Research Laboratory, Temple, TX, USA
³Spatial Sciences Laboratory, Texas A&M University, College Station, TX, USA
⁴Dept. of Water Engineering, College of Agriculture, Bu-Ali Sina Univ., Hamadan, Iran
⁵Dept. of Water Engineering, College of Agric., Malayer Univ., Malayer, Iran
⁶Dept. Systems Analysis, Integrated Assessment and Modelling, Eawag, Dübendorf, Switzerland
⁷Somewhere in Brazil

Locations/Years of Past, Present & Future SWAT Events

Trends in SWAT-related articles in SWAT Literature Database (June_2017)

Total Articles

Source: https://www.card.iastate.edu/swat_articles/; data shown here includes both SWAT and modified SWAT applications as well as review articles

Top 20 Journals in SWAT Literature Database

Source: https://www.card.iastate.edu/swat_articles/; data shown here includes both SWAT and modified SWAT applications as well as review articles

SWAT Article Trends in Water & STOTEN

Total Articles

Source: https://www.card.iastate.edu/swat_articles/; data shown here includes both SWAT and modified SWAT applications as well as review articles

SWAT Special Issues/Sections

(http://swat.tamu.edu/publications/special-issues/)

Conference or other event	Publication Year	Journal
2001 Giessen	2005	Hydrological Processes
2006 Potsdam	2008	Hydrological Sciences Journal
2009 Boulder	2010	Transactions of the ASABE
2009 Chiang Mai	2009-2011	International Agricultural Engineering Journal
2010 Seoul	2011	Transactions of the ASABE
2011 Toledo	2014	Journal of Environmental Quality
2012 New Delhi	2015	Regional Environmental Change
2013 & 2014 conferences	2015	Hydrological Sciences Journal
2013 to 2015 conferences	2015	International Journal of Agricultural & Biological Engineering (IJABE)

SWAT Special Issues/Sections/Series

(http://swat.tamu.edu/publications/special-issues/)

Conference or other event	Publication Year	Journal
2015 Purdue & Sardinia	2017	Journal of the American Water Resources Association (series)
2015 Purdue & Sardinia	2016 & 2017	Agricultural Water Management (two parts)
2015 Purdue & Sardinia	2017	Sustainability of Water Quality and Ecology
2016 Beijing	2016 & 2017	Water
2016 Beijing	2018?	Hydrology & Earth System Sciences
2015 & 2016 conferences	2017?	Environmental Modelling & Software
2017 Warsaw	2018?	Ecohydrology & Hydrobiology; Ecological Engineering; Water
2017 Malaysia	2018?	Malaysian Journal of Soil Science?; Water?

Web of Science All-Time Top-Cited JAWRA Papers (July 22, 2016)

Authors					<u>Citations</u>	
(paper rank)	Year	Title	Model	All Databases	Core Collection	
Arnold et al. (1)*	1998	Large area hydrologic modeling and assessment - part 1: Model development	SWAT	2,407	2,210	
Santhi et al. (2)	2001	Validation of the SWAT model on a large river basin with point and nonpoint sources	SWAT	537	483	
Arnold et al. (6)	1999	Automated methods for estimating baseflow and ground water recharge from streamflow records	-	396	361	
White & Chaubey (11)	2005	Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model	SWAT	203	194	

*Total Google Scholar citations = 4,763; total Scopus citations = 2,771

Web of Science All-Time Top Cited Trans. ASAE/ASABE Papers (July 22, 2016)

Authors				<u>Citations</u>	
(paper rank)	Year	Title	Model	All Databases	Core Collection
Moriasi et al. (1) [*]	2007	Model evaluation guidelines for systematic quantification of accuracy in watershed simulations	SWAT	2,144	2,051
Gassman et al. (2)	2007	The Soil and Water Assessment Tool: Historical development, applications, and future research directions	SWAT	948	892
Williams et al. (6)	1984	A modeling approach to determining the relationship between soil erosion and soil productivity	EPIC	593	542
Williams et al. (9)	1989	The EPIC crop growth-model	EPIC	442	408
*Total Goog	le Schola	ar citations = 2,738; total Scopus citatior	ns = 2,355		

Heistermann et al. 2014 Bibliometric Analysis

Analyzed ~1.9 million references cited in over 170,000 articles categorized in 80 Journals in the Thomson Reuters Journal Citation Reports Water Resources Category for 1965 to 2012

"... the dominance of one topic is particularly remarkable: the use of watershed models and the related aspects of model calibration, evaluation, and uncertainty (ranks 7, 9, 10, 11, 16, 17, 19, 21, 25)."

11	Moriasi et al. 2007. Trans. ASABE
16	Gassman et al. 2007. Trans. ASABE
21	Arnold et al. 1998. J. Amer. Water Resources Assoc.

Source: Heistermann et al. 2014. Increasing life expectancy of water resources literature. Water Resources Research. 50: 5019–5028. Doi:10.1002/2014WR015674.

Nexus Tools Platform: Popularity index P_r for 352 Models

SWAT $P_r = 39.2$ (no other hydrologic model P_r was close)

Source: Mannschatz et al. 2016. Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environ. Model. & Software. 76: 137–153.

Other Bibliometric Studies that Highlight the Impact of SWAT

Торіс	Analysis type	Citation
Total citations	Web of Science & Google searches	Refsgarrd et al. 2010. Hydrology Research 41(5): 355-377.
Non point source modeling	Key terms (title, abstract,	Zhuang et al. 2014. Journal of Soil and Water Conservation. 69(4): 121A-126A.
Soil monitoring	Keywords	Wang et al. 2015. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science.
GIS applications	Cluster analysis	Wei et al. 2015. The Professional Geographer.
River water quality	Keywords & cluster analysis	Wang et al. 2016. Scientometrics.
BMP research	Keywords	Zhuang et al. 2016. Journal of Soil and Water Conservation. 71(4): 98A-104A.

Citation data available in: https://www.card.iastate.edu/swat_articles/

SWAT model improvements to simulate bioenergy crops production

Presented by: Cibin Raj

Co-authors:

Dr. Indrajeet Chaubey, Elizabeth Trybula, Dr. Jeff Volenec Dr. Sylvie Brouder, Dr. Jeff Arnold

https://engineering.purdue.edu/ecohydrology

Miscanthus, switchgrass and crop residue as biofeedstock

https://engineering.purdue.edu/ecohydrology

Crop Growth Algorithm Improvement

- Plant nutrient uptake in stress periods
- Harvest operation representation Harvest Index (HI) adjustments with water and nutrient stress
- Dormancy period representation and dead root allocation in harvest operation
- LAI after the crop maturity senescence representation

Modification of LAI curve

- No biomass accumulation after September1 plant was still green and physiologically active
- Senescence start at October1
 - PHU=1.1 : DLAI =1.1
- Senescence End : PHU 1.2

17

https://engineering.purdue.edu/ecohydrology

All switchgrass are not the same

	Misc	Miscanthus Sha		Switchgrass	Alamo Switchgrass	-
Parameter	Suggested	Range	Suggested	Range	Database value	
Т_ОРТ	25	-	25	-	25	Estimated/
T_BASE	8	7-10	10	8-12	12	Literature
PHU	1830	2100-1600	1400	1600-1200		
BIO_E	41 (39*)		17 (12*)	10-13	47	
HVSTI	1	-	1	-	0.9	
HEFF	0.7	0.65-0.75	0.75	0.7-0.75		
BLAI	11	10-13	8	-	6	
DLAI	1.1	-	1		0.7	
EXT_COEFF	0.55	0.45-0.65	0.5	0.4-0.55	0.33	
LAIMX1	0.1	-	0.1	-	0.2	– From
LAIMX2	0.85	-	0.85	-	0.95	
FRGRW1	0.1	-	0.1	-	0.1	Measured
FRGRW2	0.45	-	0.4	-	0.2	WQFS Data
PLTNFR(1)	0.0100	0.0097-0.0104	0.0073	0.0066-0.0081	0.035	-
PLTNFR(2)	0.0065	0.0062-0.0070	0.0068	0.0067-0.0072	0.015	
PLTNFR(3)	0.0057	0.0053-0.0060	0.0053	0.0051-0.0055	0.0038	
CNYLD	0.0035	0.0034-0.0035	0.0054	0.0053-0.0058	0.0160	
PLTPFR(1)	0.0016	0.0016-0.0017	0.0011	0.0010-0.0012	0.0014	
PLTPFR(2)	0.0012	0.0010-0.0014	0.0014	0.0013-0.0016	0.001	
PLTPFR(3)	0.0009	0.0007-0.0011	0.0012	0.0011-0.0012	0.0007	
CPYLD	0.0003	0.0003-0.0004	0.0010	0.0010-0.0011	0.0022	
СНТМХ	3.5	-	2	-	2.5	
RDMX	3	2-4	3	2-4	2.2	
WSYF	1	-	1	-	0.9	From SWAT
ALAI_MIN	0	-	0	-	0	Database
USLE_C	Existing A	Alamo Value	Existing A	Alamo Value	0.003	
VPDFR	Existing A	Alamo Value	Existing A	Alamo Value	4	I UKDUE
GSI	Existing Alamo Value		Existing /	Alamo Value	0.005	UNIVERSITY.

International SWAT-Asia Conference IV @Tsukuba, Ibaraki, Japan

Model Development Watershed modelling Terrace evaluation

Future research

Hui Shao (Shawn) PhD Dept. of Geography University of Guelph OCT 2015

Part 2

Terrace model

2.1 Concept design

Process-based terrace simulation

Traditional terrace modelling method (Parameter representation)

Parameter	Represent effects
CN2	Adjust rainfall infiltration in terrace
USLE-P	Reduce sediment losses
SLSUBBSN	Distance between terraces

Waidler, D. et al. 2011. Conservation Practice Modeling Guide for SWAT and APEX. TR-399. College Station, Texas A&M University System.

Process-based terrace algorithm in HRU

H. Shao, C. Baffaut, J. E. Gao et al. 2013. Development and Application of Algorithms for Simulating Terraces within SWAT. Transaction of ASABE, 56(5): 1715-1730.

2.2 Terrace algorithm

Part 2

Terrace model

01 Terrace types and segments

Maximum free Original water surface Slope **Runoff: SCS curve number** (Bed) (Riser) Frosion: MUSI F method Cut **1** H_t Nutrients: nitrogen & phosphorous \checkmark Fill Plant growth: optimal growth & stress \checkmark Soil layer 1 More: plant management, lateral flow, Soil layer 2 Map of bench terrace water harvesting etc. ←L,→ ·L,-I Lh (Riser or (Bed or (Riser or (Riser or (Bed or (Riser or (Undisturbed) HANGING Cutslope) Frontslope) Cutslope) Cutslope) Cutslope) Frontslope) Lterrace (Terrace unit) Cut Fill MPROVIN Cut Fill Soil layer 1 LIFE Map of normal terrace Soil layer 2 21

2.2 Terrace algorithm

03 Terrace storage effects

- ✓ Sub-daily simulation
- Sediment and nutrient settlement
- ✓ Extra infiltration

Part 2

Terrace model

- ✓ Extra evaporation
- Inside terrace channel erosion
- ✓ Terrace output

CHANGING

Moriasi et al. (2007; 2015) Suggested Streamflow NSE Criteria (NSE: Nash-Sutcliffe modeling efficiency)

Performance Rating	NSE Criteria (2007 Annual or Monthly)	NSE Criteria (2015 Annual, Monthly or Daily)
Very good	0.75 <nse≤1.00< td=""><td>0.80<nse≤1.00< td=""></nse≤1.00<></td></nse≤1.00<>	0.80 <nse≤1.00< td=""></nse≤1.00<>
Good	0.65 <nse≤0.75< td=""><td>0.70<nse≤0.80< td=""></nse≤0.80<></td></nse≤0.75<>	0.70 <nse≤0.80< td=""></nse≤0.80<>
Satisfactory	0.50 <nse≤0.65< td=""><td>0.50<nse≤0.70< td=""></nse≤0.70<></td></nse≤0.65<>	0.50 <nse≤0.70< td=""></nse≤0.70<>
Unsatisfactory	NSE≤0.50	NSE≤0.50

Sources: Moriasi et al. 2007. Transactions of the ASABE. 50(3): 885-900. Doi: 10.13031/2013.23153. & Moriasi et al. 2015. Transactions of the ASABE. 58(6): 1763-1785. Doi: 10.13031/trans.58.10715.

Frequency of SWAT Daily Streamflow Statistical Results (combined from five review studies^{*})

Frequency	Calibration		Validation	
	R ²	NSE	R ²	NSE
Total models	83	168	78	143
0.9 – 1.0	9	7	3	1
0.8 – 0.89	11	12	7	9
0.7 – 0.79	19	39	18	15
0.6 – 0.69	23	35	17	38
0.5 – 0.59	10	34	14	23
0.4 - 0.49	6	14	10	17
0.3 – 0.39	0	7	4	12
0.0 – 0.29	5	12	5	10
< 0.0	0	9	0	18

*(1) Gassman et al. 2007. Trans. ASABE 50(4): 1211-1250 (2) Douglas-Mankin et al. 2010. Trans. ASABE 53(5): 1423-1431 (3) Tuppad et al. 2011. Trans. ASABE (4) Gassman et al. 2014. JEQ 43(1): 1-8 (5) Akhaven & Mehrabi, personal communication (statistics compiled for Iranian SWAT studies)

Distribution of Surveyed SWAT Studies in Brazil & Iran

Percentage of publications

Bressiani et al. 2015. IJABE 8(3) Doi: 10.3965/j.ijabe.20150803.1765; Akhaven & Mehrabi, personal communication (statistics compiled for Iranian SWAT studies)

NSE Statistical Results for Brazilian & Iranian SWAT Studies Reporting Calibration Results (based on Moriasi et al. 2007)

Performance Rating	NSE Criteria	Monthly NSE <u>Country (studies)</u> Brazil (31) Iran (66)		Daily NSE <u>Country (studies)</u> Brazil (26) Iran (20)	
Very good	0.75 <nse≤ 1.00</nse≤ 	61%	40%	25%	21%
Good	0.65 <nse≤ 0.75</nse≤ 	29%	40%	18%	32%
Satisfactory	0.50 <nse≤ 0.65</nse≤ 	3%	36%	25%	26%
Unsatisfactory	NSE≤0.50	6%	10%	25%	19%

Bressiani et al. 2015. IJABE 8(3): 9-35. Doi: 10.3965/j.ijabe.20150803.1765; Akhaven & Mehrabi, personal communication (statistics compiled for Iranain SWAT studies)

A Few More thoughts on NSE, etc. Criteria

- Keep in mind Moriasi et al. (2007;2015) present SUGGESTED criteria
- We can be too strict; e.g., monthly sediment NSE of 0.47 by Beeson et al. (2014)* "unsatisfactory"
- Stronger need to focus on water balance processes, etc. being accurate (more reliance on "soft data")
- Need for more review of "bad SWAT stuff"?!**

*Beeson et al. 2014. JEQ. 43(1): 26-36. Doi: 10.2134/jeq2012.0148. **van Griensven et al. Hydrol & Earth Syst Sci. 16: 3371-3381. Doi: 10.5194/hess-16-3371-2012.

Increasing Recognition for Checking Model Outputs with "Soft Data"

- Arnold et al. 2015. Hydrological processes and model representation: Impact of soft data on calibration. Transactions of the ASABE. 58(6): 1637-1660. Doi: 10.13031/trans.58.10710.
- Consider known water balance, vegetation biomass & other processes, literature data, expert opinion, etc. in evaluating model output
- SWAT CHECK: can identify possible input problems
 - http://swat.tamu.edu/software/swat-check/

Some Concluding Thoughts

• SWAT has proven to be a useful model worldwide

- Dominant ecohydrological model in existing literature
- Global testing results indicate that SWAT can accurately replicate streamflow, etc. for many different kinds of conditions.
 - but good statistics can mask problems
 - code and/or input modifications can be needed to achieve desired results
- Incorporation of routines in modified models desirable and development of new algorithms needed, e.g., rice paddy module

