Basin-wide water accounting based on modified SWAT model (SWAT-FARS): an application for the Tashk-Bakhtegan Basin, Iran.

Majid Delavar, Saeed Morid, Reyhaneh Morid

Water Resources Eng. Dept., Tarbiat Modares University, Tehran, Iran. Email: m.delavar@modares.ac.ir

2017 International SWAT Conference in Warsaw, Poland

Introduction (Why this study?)

- ✓ Analyzing the water resources systems and solving water problems require information from many disciplines, and the physical accounts (describing sources and uses of water) are the most important foundation. This information has to be coherent and harmonized in order to provide an useful integrated picture for the assessment of the problems.
- ✓ Water accounting frameworks as an useful tool integrate hydrological processes with land use, managed water flows and the services that result from water consumption in river basins and make useful management information for decision makers within the water sector and related to the water sector.
- ✓ The main aim of this work is to demonstrate the basin wide application of water accounting framework based on the modified version of the SWAT model to produce information on depletion of water resources, storage change, and land and water productivity in a semi arid region in Iran

Objectives

- ✓ Comprehensive Simulation of water resources and agricultural systems and integrate its results with the water accounting framework.
- ✓ SWAT Model and WA+ Water Accounting Framework

wateraccounting.org

Water accounting system IWMI-WA +

Water accounting is the process of communicating water resources related information and the services generated from consumptive use in a geographical domain, such as a river basin, a country or a land use class; to users such as policy makers, water authorities, managers, etc.

• Developed Version of the IWMI framework

• 8 standard reporting sheet and sets of indicators to help users to better understand the current state of water resources, issues, future challenges and opportunities for improvements in a area.

The purpose of WA+ sheets

Water sheets	Purpose
Resource Base	Hydrological, manageable, utilisable flows, water security, sustainability
Evapotranspiration	Beneficial & non-beneficial flows
Productivity	Land and water productivity
Withdrawal	Management, regulations, allocations

It is a multi-institutional effort from international knowledge centers (IWMI, UNESCO-IHE, FAO, and WWAP)

Study Area

- ✓ The Tashk and Bakhtegan basin is placed in central of the Iran which drains into the Tashk and Bakhtegan Lakes that are now completely dry.
- ✓ The study area is a karsty basin and the region total area is equal to 27000 km2.
- ✓ The basin has a large agricultural areas with intensive irrigation which more than 60% of irrigated agriculture supplies are dependent on groundwater resources.

There are three large dams on the basin rivers that significantly reduced water flow into the lakes

Setup the comprehensive simulation model

Spatial Data for SWAT model setup

- Aster 30 meter DEM
- Three Land use maps for 1981, 2007 and 2015 (LANDSAT Images)
- Soil Map with 13 soil class
- Stream network layers, Location tables of dams and meteorological and hydrometric stations
- Local Information
 - ✓ 56 sub basin
 - ✓ 2245 HRUs in order to apply agricultural management practices in area includes:
 - 18 Irrigated crops and 7 rain-fed crops

Meteorological information

Meteorological information includes 3 synoptic stations and 12 rain gauge stations and 9 climatological stations

Station Type	During the period	Height	latitude	Longitude	Station name
synoptic	2000-2009	1620	30° 13′	52° 26′	Sad Doroodzan
synoptic	1989-2008	1596	29° 47′	52° 43′	Zarghan
synoptic	1989-2008	1596	29° 47′	52° 43′	Shiraz
climatological	1957-1989	2303	30° 16′	51° 59′	Ardakan- Fars
climatological	1971-2013	1880	29° 16′	52° 14′	Cheshme Bonab
climatological	1970-1987	1605	29° 56′	52° 54′	Takht Jamshid
climatological	1968-1980	1630	29° 31′	54° 19′	Kharameh
climatological	1974-2007	1690	29° 9′	54° 4′	Estahban
climatological	1964-2003	1632	29° 11′	52° 19′	Neiriz
climatological	1996-2010	1690	29° 55′	52° 19′	Arsanjan
climatological	1996-2003	1650	29° 57′	53° 23′	Tele Beiza
climatological	1995-2013	1600	29° 48′	53° 44′	Abadeh Tashk
rain gauge	1966-2015	2207	30° 23′	52° 41′	Ahmadabad Chahardangeh
rain gauge	1968-2015	1966	30° 37′	51° 58′	Jamalbeig
rain gauge	1967-2014	1580	29° 30′	53° 20′	Jahan abad bakhteghan
rain gauge	1966-2014	1779	30° 28′	52° 6′	Chamriz
rain gauge	1972-2015	2001	30° 33′	51° 54′	Chubkhaleh
rain gauge	1968-2015	1966	30° 37′	51° 58′	Jamalbeig
rain gauge	1970-2009	2101	30° 40′	52° 07′	Dehkadeh sefid
rain gauge	1986-2014	2197	30° 44′	52° 10′	Sadeh
rain gauge	1987-2015	1566	29° 16′	53° 54′	Sahl abad
rain gauge	1977-2014	2184	30° 32′	52° 21′	Kaftar
rain gauge	1985-2015	1849	30° 12′	53° 11′	Madar soleyman
rain gauge	1969-2014	1639	29° 59′	52° 42′	Mehrabad ramjerd

Cropping Pattern and Management Information

Type		Crop	Fe	ertilizer (K	(g/Ha)	T		
	Сгор	Crop Area (%)		Phospha te	Manure	(mm)	Yield (Kg/ha)	
	Apple	1/2	200	150	25000	880	25000-3400	
	Plum	0/1	200	150	25000	744	25000-4500	
	Almond	2/4	200	200	_	1022	3500-200	
	Fig	0/0	200	200	-	300	4000-800	
	Olive	4/5	250	200	20000	1266	16000-600	
	Saffron	1/0	-	-	-	300	4	
	Wheat	2/49	200	100	25000	476	5800-1000	<
	Barley	4/4	200	100	25000	410	4500-400	
eq	Sunflower	3/6	70	45	28000	577	8800-1000	-
gat	Rapeseed	8/1	100	100	_	916	4200-1400	ζ
Irri	Sugar Beet	4/3	170	260	1900	1168	44100-3200	
	Tomato	6/2	80	100	10000	772	70000-6000	
	Potato	9/0	150	100	-	853	36000-16000	
	Onion	5/0	100	80	30000	861	89000-7000	
	Alfalaf	3/3	100	100	21000	1123	66000-4000	
	Beans	2/8	100	150	10000	729	3500-1000	
	Rice	3/6	2.5	2.5	_	772	5000-3000	
	Lentils	2/0	65	18	_	_	762	
	Pea	2/6	_	18	_	_	347	
-	Barley	9/5	200	100	25000	_	400-4500	
Fee	Wheat	2/13	200	100	25000	_	1000-5800	
ain	Almond	4/20	200	200	_	_	200-3500	
X	Fig	9/34	200	200	-	_	800-4000	
	Grape	3/19			25000		4200-1000	

 ✓ Catchment management information including: cropping patterns, date of planting and harvesting, Irrigation and Fertilization planning, Source of water
supply and crop rotation in each region

25

Domestic and the industrial water uses \checkmark

industry (MCM)	Drinking (MCM)	Areas
0.13	1.94	Tavabe arsanjan
0.71	1.98	arsanjan
0.66	8.43	Seydan farugh
1.01	4.27	Abadeh tashk
0.01	0.39	Khaneh kat
0	1.21	Khir
0.1	4.47	Estahban
1.35	5.54	Neyriz
0.78	0.7	Tange hana
1.95	29.98	Marvdasht- kharameh
0.21	2.61	Daryan
1.47	1.72	Saadatabad
0	0.57	Sarpaniran
1.45	2.63	Ghaderabad
0.66	6.32	Dehbid
2	5.2	Namdan
10.08	9.1	Beyza- zarghan
1.64	11.17	Dezkord- kamfirooz
4.39	11.16	Khosrow Shirin
0.01	2.01	Aspas
0	1.72	Bakan

✓ Characteristics of aquifers

Calibration Data

- ✓ Hydrometric Data (11 Stations and 37 years)
- ✓ Ground Water Level (22 Aquifer)
- ✓ Crop Yield (26 Crops)
- ✓ Evapotranspiration (26 crops)

During the period	Height	Latitude	Longitude	Station Name
1974-2014	2100	30° 40′	52 ° 7 ´	Dehkadeh sefid
1970-2014	1900	30° 35′	51 ° 58 ´	Jamalbeyg- shirin
1964-2014	1840	30° 28′	52 ° 06 ´	Chamriz
2010-2014	1686	30° 19′	52 ° 16 ΄	Abbasabad
1985-2014	1900	30° 10′	53 ° 09 ´	Tange balaghi
1967-2014	1646	30° 13′	52 ° 26 ´	Sad doroodzan
1991-2014	1761	30° 6′	53 ° 04 ´	Rahmat abad
1959-2014	1660	30° 1′	52 ° 58 ´	Dashtbal
1964-2014	1606	29° 20′	52 ° 47 ´	Pol khan
1007 2014	1573	20° 35′	53 ° 70 <i>′</i>	Hasan abad
177/-2014	1573	27 33	55 20	kharameh

Development of SWAT-FARS package

- Modified SWAT model to simulate specific conditions of the study area
- Sub program for applying Dynamic changes of land use
- Sub program of extraction and analysis of model outputs based on the WA+ water accounting framework

Modification of SWAT model

The SWAT-FARS is designed to simulate the complex agro-ecosystems and quantify the irrigation impacts on water cycle and actual water losses in a large scale karsty basin

- Modify the model to simulate the interaction of aquifers and report the groundwater level
- Modify the SWAT model irrigation modules for simulation of irrigation systems and field water losses
- Modify the model to simulate the effects of salinity changes on agricultural production
- Modify the model for linking its outputs to the WA+ water accounting
- ✓ Activation and application of crack flow modules to simulate flow in

SWAT-LUC for activating the dynamic land use changes in SWAT model

SWAT- WA⁺

• Processing outputs of SWAT-FARS model

Model Calibration and validation

- Analysis extreme conditions
- Calibration of flow (observation data)
- Calibration and control of base flow (observation data)
- Calibration of groundwater level changes and control the withdrawal (the observed and estimated data)
- Calibration of crop yield (observations)
- Calibration of evapotranspiration (National Water Doc)

Using SUFI-2 algorithms and parallel processing version of the in SWAT-CUP to speed up the calibration of model

Simultaneous approach

Calibration of Base flow

R2	RMSE(cms)	NS	
0.58	0.66	0.73	Dehkadeh sefid (Upstream of mulla sadra dam)
0.75	0.22	0.74	Jamalbeig
0.67	1.77	0.56	Tange balaghi (Upstream of Sivand dam)
0.95	3.16	0.90	Abbas abad (Upstream of Doroodzan dam)

	About ×
	Product Name: BFI+
	Version: 3.0 Hydro Office
	Build: 7
	Author: Mgr. Miloš Gregor 1, 2
	Mail: milos.gregor@hydrooffice.org Website: http://hydrooffice.org
ΞŪ.	Description: Application for baseflow separation from discharge time-series.
2,	¹ Department of Hydrogeology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
~	² Department of Hydrogeology and Geothermal Energy, Geological Survey of Slovak Republic, Bratislava
	<u>о</u> к

Recursive digital filter

The algorithm, originally described by Nathan & McMahon (1990), calculates the quick flow component q_i at time step *i* from q_{i-1} at previous time step and total flow Q_i and Q_{i-1} :

اصتهبان

$$q_{i} = \beta q_{i-1} + \frac{1+\beta}{2}(Q_{i} - Q_{i-1})$$

where β is a filter constant ranging between 0.9 and 0.95. Baseflow b_i is calculated as: $b_i = Q_i - q_i$

Seasonal base flow index (upstream of Mulla Sadra Dam)

Seasonal base flow index (Jamalbeig)

Seasonal base flow index (upstream of Sivand Dam)

Seasonal base flow index (upstream of Doroodzan Dam)

Performance of model on simulation of the Crop yields and evapotranspiration

		Apple	Peach	Almond	Olive	Wheat	Barley	Canola	Sugar beet	tomato	potato
	R2	0.98	0.83	-	0.79	0.5	0.41	0.95	0.92	0.89	0.94
Evapotranspiration	Ns	0.98	0.81	-	0.47	0.67	0.58	0.94	0.92	0.85	0.94
X7.:1.1	R2	0.92	0.83	0.62	0.83	0.66	0.76	0.90	0.60	0.48	0.62
Yend	Ns	0.92	0.80	0.52	0.35	0.27	0.68	0.89	0.61	0.51	0.47
		Alfalfa	Beans	Rice	Sunflower	onion	Lentil	Barley Rainfed	Wheat Rainfed	Figs	Almond Rainfed
Evenetronariantica	R2	0.93	0.88	0.92	0.84	0.93	-	-	-	-	-
Evapotranspiration	Ns	0.76	0.76	0.90	0.78	0.92	-	-	-	-	-
Yeild Yeild Evapotranspiration Yeild	R2	0.97	0.88	0.92	0.25	0.77	0.99	0.59	0.90	0.86	0.62
	Ns	0.93	0.86	0.91	0.63	0.53	0.47	0.48	0.63	0.84	0.52

Rainfed

Calibration of groundwater level changes

Compare the groundwater recharge (mm) with national documents

Compare the groundwater withdrawals and observed data

Capabilities of SWAT-FARS Model

Assessment of effects the

- ✓ Simulation and spatial and temporal analysis of water balance components in the different climatic and management conditions
- ✓ Calculating the potential of renewable water resources

✓ Estimation of the green and blue water footprints

Assessment of effects the Development of pressure systems

- Analyzing the agricultural and water resources systems using WA+ water accounting framework
- ✓ Assessing the impact of climate variability and human activities on water balance components
- ✓ Simulation wide range of management strategies (e.g. structural development, type and cropping pattern, change the planting time, change the efficiency, etc.)
- ✓ Separating withdrawal, consumption (depletion) and determine the real water saving based on the proposed management strategies

Results

Report of Water Sources and Consumptions (mcm)

1980-2006

2007-2014

Extracted Indicators from the report of water resource and consumptions for different time periods

Amount	The analysis period	Calculation method	Description	Index
0.28	1985-2006	Manageable Water	What proportion of net input basin is	The ratio of manageable
0.23	2007-2014	Net input Water	downstream commitments ?	water
-0.073	1985-2006	Change the groundwater volume Manageable Water	What proportion of manageable water basin is originated the change volume of	The ratio of ground water
-0.16	2007-2014	Traitageable Trater	groundwater?	
0.88	1985-2006	Manageable Water – The downstream commitme	What proportion of water allocable	The ratio of utilizable
0.85	2007-2014	Manageable Water	?	water
0.49	1985-2006	Supplementary Evapotranspiration	What proportion of water allocable basin	
0.99	2007-2014	Manageable Water – The downstream commitme	is consumed on it?	Consumption ratio
4.47	1985-2006	flowout	What proportion of water commitments	The ratio of
0.03	2007-2014	The downstream commitments	the downstream basin is supplied?	supply 31

Extracted Indicators from evapotranspiration report of the basin for different time periods

Amount	The analysis period	Calculation Method	Description	The Title of Index	
0.41	1985-2006	The Total Transpiration	What part of the basin evapotranspiration has been spent	Transpiration ratio	
0.43	2006-2014	The Total Evapotranspiration	for the plants Transpiration ? (How much the water consumptions of basin has been beneficial ?)	(beneficial consumption of basin)	
0.81	1985-2006	A ariculture Transpiration	What part of agricultural evapotranspiration has been spent	Agriculture Transpiration	
0.81	2006-2014	Total agricultural evapotranspiration	for the plants Transpiration ? (How much of agricultural water use has been beneficial?)	ratio (beneficial consumption of agriculture sector)	
0.23	1985-2006	Evapotranspiration of managed lands	What part of basin water	Manageable area	
0.31	2006-2014	The Total Evapotranspiration	lands under management ?	consumption ratio	
0.23	1985-2006	Agricultural Evapotranspiration*	What part of basin water consumption has been spent	Agricultural	
0.28	2006-2014	The Total Evapotranspiration	agricultural production ?	Evapotranspiration ratio	
0.83	1985-2006	Irrigated agricultural evapotranspiration**	What part of the agricultural	Irrigated Agricultural	
0.87	2006-2014	Agricultural Evapotranspiration	Through irrigation ?	Evapotranspirati331 ratio	

Extracted Indicators from Withdrawal report of basin for different time periods

Amount	The analysis period	Calculation Method	Description	The Title of Index
0.56	1985-2006	groundwater Withdrawal	What part of the total water withdrawal	Groundwater
0.88	2006-2014	The total agricultural water withdrawals	groundwater ?	Withdrawal ratio
0.40	1985-2006	Incremantal Evapotranspiration of irrigated lands	What part of the water withdrawal for	Form Efficiency
0.45	2006-2014	The total agricultural water withdrawals	evapotranspiration ?	Farm Enciency
0.73	1985-2006	Incremantal Evapotranspiration of irrigated lands	What part of the water used to irrigate	Basin Efficiency
0.85	2006-2014	The total agricultural water withdrawals – Return Water	has been spent the crop evapotranspiration?	
0.43	1985-2006	Return Water	What part of the water withdrawal for	The Return Water
0.40	2006-2014	The total agricultural water withdrawals	irrigation is back again to the water resources of basin?	ratio 35

	Cereals	reals Non-cereals			Fruit &	Fruit & vegetables			Feed crops	Beverage crops	Other			
Land	906	200	-	5	1		17.5			-	100	~	Yield	rainfed
	320	-	600	-	۲	47	2,200	V. .		-	1.772		Yield from rainfall)
product-	1,286		139	-	197	8,636	5,649	V =				-	Incremental yield	irrigated
ivity	1,606		739		583	8,683	7,849	N = =					Total yield)
		Root / tuber crops	Leguminous crops	Sugar crops	Merged	Vegetables & melons	Fruits & nuts	Merged						
	0.45	-	÷		-	-	-	8	-	-	124		WP	rainfed
Water product-	0.32		0.67	-		0.44	1.43		8	-			WP from rainfall)
ivity	0.65		1.23	-	27	8.19	2.37			1573		-	Incremental WP	irrigated
	0.52	20.	0.73	2	27.5	7.48	1.98	3_			17-1		Total WP)

Discussion

✓ The results showed that total average annual water depletion in the basin (9.23 km3) exceeded basin water inflows (9.24 km3) during the last decade. This suggest that the Task-Bakhtegan basin is nearly a closed basin in which more than 99 % of the available water is depleted.

✓ The managed water use, chiefly dominated by irrigated agriculture, accounts for 28 % of depletion (ET) and about the 60% basin water depletions is vaporized non-beneficially into the atmosphere.

✓ Based on the results, loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues in the case study.

Conclusion:

 Proposed modelling framework shows integrated simulation of the crop growth and basin hydrologic components can be used for basin wide water accounting.

SWAT-FARS Package as a useful integrated DSS tool can help DM to better understand the current state of water resources, issues, future challenges and opportunities for improvements in the study area.

Thanks for your attention

Bakhtegan Lake after drying

Bakhtegan Lake before drying

The second second with a state with a state when a state