

INTEGRATED DECISION SUPPORT SYSTEM FOR EVALUATING SMALL SCALE IRRIGATION TECHNOLOGIES IN DIMBASINA WATERSHED, GHANA

Abeyou W. Worqlul¹, Yihun T. Dile², Jean-Claude Bizimana³, Jaehak Jeong¹, Petra Schmitter⁴, Thomas Gerik¹,

R. Srinivasan², James W.Richardson³ and, Neville Clark²

¹ Texas AgriLife Research, Temple, Texas, USA
 ²Texas A&M University, College Station, Texas, USA
 ³Department of Agricultural Economics, Texas A&M University, College Station, Texas, USA

Project Components

- Farm family surveys of factors affecting adoption of small-scale irrigation,
- Demand-driven research demonstrations of small-scale irrigation interventions,
- Use of Integrated Decision Support System (APEX, SWAT, FARMSIM) to simulate production, environmental, economic, and nutritional impacts of small-scale irrigation, and
- Capacity building (IDSS training, graduate student support, on-farm farmers training, etc)

INTERVENTION SITES

Feed the Future
Innovation Lab for
Small Scale Irrigation
Integrated Decision
Support System (IDSS)
sites in Africa.

Integrated Decision Support System

FUTURE s Global Hunger & Food Security Initiative

- SWAT calibrated parameters for a nearby watershed White Volta basin transferred to Dimbasina SWAT site;
- APEX was setup for SWAT subarea;
- APEX is calibrated for Corn and Sorghum and the calibrated parameters for these crops are transferred back to SWAT
- Calibrated crop yields are entered in FARMSIM for economic analyses

Result: Stream flow

 SWAT model calibration was done using streamflow at the Pwalugu river gauging station in White Volta.

Calibration SWAT/APEX – Runoff

Nash-Sutcliff Efficiency (NSE)= 0.88 R-square value of 0.94

Calibration of Baseline Crop Yield & 32 Yield Data

Comparison of APEX vs. FAOSTAT maize and sorghum yield from 1983 to 2013

Result:: Groundwater Availability

Crops were grown on suitable land based on there distribution for the baseline;

Irrigation water requirement > recharge

APEX Scenarios

- Scenario 1: multiple cropping of fertilized maize with vegetables (fertilized maize + tomato, fertilized maize + pepper, fertilized maize + fodder);
- Scenario 2: multiple cropping of fertilized sorghum + tomato, sorghum + pepper, sorghum + fodder;

FARMSIM Scenarios

- Scenario description
 - Baseline scenario: low fertilizer + no irrigation
 - Alternative scenarios (5):

Irrigation of tomatoes, red pepper and fodder (vetch & oats) + recommended fertilizers + dual cropping of veg./fodder with sorghum or maize + use pulley, diesel and solar pump for irrigation

- Water lifting technologies:
 - Pulley/bucket: 8 liters/min
 - Motor pump operated by diesel: 120 liters/min
 - Motor pump operated by solar power: 40 liters/min
- Total potential irrigable land: 450 ha

MAIZE YIELD

VEGETABLE CROP YIELD

Number of stress days (days/year

Dimbasinia community

- Analysis of alternative irrigation technology in Dimbasinia community given the following:
 - Agricultural land: 2,064 ha (60% suitable for irrigation slope less than 6%)
 - Fodder (slope 6 to 8%), other 50% paper and tomato
 - Dryland maize and sorghum (grown in wet season) and irrigated tomatoes and red pepper (grown in dry season)
 - Number of cows: 771
 - Number ewes and nannies: 835 and 1975
 - Number of families: 374
- Irrigation costs:
 - Equipment costs: 2260 to 3000 GH¢ /family (Diesel and solar pump + accessories)
 - Note: a pulley/bucket system: 235 GHC
 - Operational costs (fuel, maintenance, rental): 235 290 GHC/ ha

Net Present Value (NPV)

Legend

Baseline: No irrigation Alt.2: Rope-WS Alt.4: Diesel_PO-SV Alt.1: Pulley-SV Alt.3: Diesel PR-SV Alt.5: Solar P-SV

Nutrition Results

- Increase in quantity available per day and per adult equiv. under alt. scenarios for calories, proteins and fat
 - Improvement from the baseline (High level)
- Levels of Ca, Iron and Vitamin A increased also from Baseline to Alternative scenario:
 - Improvement from baseline (adequate level)

Conclusions

- There is large water resources potential in the Dimbasinia watershed. However, the average annual irrigation water requirement for cultivating pepper/tomato and fodder was more than the average annual shallow groundwater recharge.
- Addition of 50 kg/ha of urea and 50 kg/ha of DAP doubled simulated maize and sorghum yields.
- Additional fertilizer, multiple cropping and irrigation performed better than baseline scenario.
- Solar pump was the preferred water lifting technology less maintenance cost and environmental friendly.

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

