Watershed Configuration in SWAT+

Katrin Bieger, Michael J. White, and Jeffrey G. Arnold 2017 International SWAT Conference Warsaw, Poland June 28, 2017

Motivation

"A major challenge of the ongoing evolution of the model will be meeting the desire for additional spatial complexity while maintaining ease of model use." (Gassman et al. 2007)

Model vs. reality

- a. Subbasin with reservoir at outlet
- b. Reservoirs spanning multiple subbasins
- c. Playa lakes and potholes
- d. No water features in subbasin
- e. Swamp/marsh covering entire subbasins
- f. Unconnected drainage

Watershed configuration

SWAT Soil & Water Assessment Tool

- Subdivision of subbasins into HRUs
- Water areas defined as HRUs

SWAT+

- Separation of water and land areas within subbasins
- Water areas defined as ponds or reservoirs
- Definition of one or more LSUs to aggregate HRUs

Watershed delineation

Landscape units

- Differences in hydrologic properties
- Runoff routing across the landscape

Delineation methods:

- a) Topographic Wetness Index (Beven and Kirkby, 1979)
- b) Slope Position (USDA Forest Service, 1999)
- c) Uniform Flood Stage (Williams et al., 2000)
- d) Variable Flood Stage (Nardi et al., 2006)

Rathjens et al., 2016. Delineating floodplain and upland areas for hydrologic models - A comparison of methods. Hydrological Processes 30(23):4367-4383.

7/12/2017

Streamflow and water balance (1 LSU)

Spatial distribution of average annual ET

Difference in water balance and average annual ET

	1 LSU	2 LSUs
ET	755	755
Surface runoff	113	114
Lateral flow	41	41
Percolation	228	263
Groundwater flow	136	???

Bieger et al.

Comparison of streamflow

Bieger et al.

Watershed configuration

SWAT Soil & Water Assessment Tool

- Subdivision of subbasins into HRUs
- Water areas defined as HRUs

- One channel per subbasin
- Reservoirs at subbasin outlet

SWAT+

- Separation of water and land areas within subbasins
- Water areas defined as ponds or reservoirs
- Definition of one or more LSUs to aggregate HRUs
- As many channels per subbasin as desired
- Reservoirs anywhere along the stream network

Placement of reservoirs

Is placing a reservoir at the HUC12 outlet always appropriate? What if the reservoir is actually located further upstream?

Watershed configuration

SWAT Soil & Water Assessment Tool

- Subdivision of subbasins into HRUs
- Water areas defined as HRUs

- One channel per subbasin
- Reservoirs at subbasin outlet
- All spatial connections defined in fig.fig file
- One predefined receiving object

- Separation of water and land areas within subbasins
- Water areas defined as ponds or reservoirs
- Definition of one or more LSUs to aggregate HRUs
- As many channels per subbasin as desired
- Reservoirs anywhere along the stream network
- One *.con file per spatial object to define outflow hydrographs, fractions, and receiving objects

7/12/2017

Spatial objects and connections in SWAT+

HRUs, aquifers, channels, reservoirs, etc. are separate spatial objects

flexible spatial representation of connectivity within a watershed using "connect" files

Spatial connections

channel	.con: Char	nnel spatia	al connect	ions -	LREW Sub	Water															
CHA	NUMB (CHA NAME	LATITUDE	LONGIT	UDE	AREA	c	HA	WST NAME	CONST TYP	PE	OVERFLO	W	RULE	OUT T	OT OBJ :	CYP1	OBJ ID1	HYDRO TY	'P1	FRAC1
	1		31.742	-83.	732 1	175.320		1	_ 1	-	0	0.00	0	0	-	1 -	cha	- 49	t	ot	1.000
	2	cha2	31.720	-83.	696 1	102.060		2	1		0	0.00	0	0		1	cha	146	t	ot	1.000
	3	cha3	31.674	-83.	652 3	371.700		3	1		0	0.00	0	0		1	res	173	t	ot	1.000
	4	cha4	31.647	-83.	682	86.490		4	1		0	0.00	0	0		1	cha	165	t	ot	1.000
	5	cha5	31.620	-83.	736 1	169.920		5	1		0	0.00	0	0		1	cha	202	t	ot	1.000
	6	cha6	31.572	-83.	572 1	103.050		6	1		0	0.00	0	0		1	cha	126	t	ot	1.000
	7	cha7	31.531	-83.	549 1	120.240		7	1		0	0.00	0	0		1	cha	186	t	ot	1.000
	8	cha8	31.506	-83.	620 1	139.770		8	1		0	0.00	0	0		1	res	174	t	ot	1.000
	9	cha9	31.738	-83.	758 3	363.780		9	1		0	0.00	0	0		1	res	175	t	ot	1.000
	10	cha10	31.717	-83.	679	83.700		10	1		0	0.00	0	0		1	res	176	t	ot	1.000
	11	cha11	31.687	-83.	755 1	174.960		11	1		0	0.00	0	0		1	res	177	t	ot	1.000
	12	cha12	31.652	-83.	711 1	165.960		12	1		0	0.00	0	0		1	cha	243	t	ot	1.000
	13	cha13	31,608	-83.	602	83.790		13	1		0	0.00	0	0		1	cha	213	t	ot	1.000
	14	cha14	31,568	-83.	620 4	467.640		14	1		0	0.00	0	0		1	cha	180	t	ot	1.000
	15	cha15	31.543	-83.	665 1	100.440		15	1		0	0.00	0	0		1	cha	151	+	ot	1.000
	16	cha16	31.495	-83.	543 1	191.250		16	1		0	0.00	0	ő		1	res	178	-	ot	1.000
	17	cha17	31 742	-83	750	91 710		17	1		õ	0.00	0	ő		1	res	179	+	ot	1 000
	18	cha18	31.713	-83	659 1	113.940		18	1		0	0.00	0	õ		1	res	180	-	ot	1.000
	19	cha19	31 682	-83	668	71 550		19	1		0	0.00	0	ő		1	cha	171	+	ot	1 000
	20	cha20	31 646	-83	703 3	201.240		20	1		0	0.00	0	õ		1	cha	246	+	ot	1 000
											-		-	-		-			-		
172	ama 172	21 67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	650	2 0.60	.	172		10	0		0 000		0	-		- h -	105		t a t	1 000
173	srei/3	31.67	4 -03.	.032	2.000	, ,	174		11	0		0.000		0	-	- (sna -b	195			1.000
174	sre1/4	31.50	-63.	250	2.000		174		11	0		0.000		0	-		cha -b-	240		LOL	1.000
175	srei/5	31.73	-03.	. / 50	10.010	, ,	175		00	0		0.000		0	-		cha	110		LOL	1.000
1/6	srei/6	31./1	./ -83.	.679	0.720)	1/6		20	0		0.000		0	1	L (cna	110		LOL	1.000
1//	srei//	31.68	-83.	. / 55	0.540	5	177		2	0		0.000		0	1	L (cna	135		LOL	1.000
178	srel/8	31.49	-83.	.543	3.600)	178		22	0		0.000		0	1	L (cha	32		tot	1.000
179	sre179	31.74	2 -83.	.750	2.430)	179		25	0		0.000		0	1	L (cha	57		tot	1.000
180	sre180	31.71	.3 -83.	.659	1.350)	180		20	0		0.000		0	1	L (cha	116		tot	1.000
	OB.T TYP1	OBJ TD1 HY	ADRO TVP1	FRAC1 OF	B.T TVD2	OBJT TD2	HYDRO TY	D2 FRAC	2 OB.T TVI	3 OB.T TD3	HYD	RO TYP3	FRACS	OB.T TYPA	OBJ TD4	HYDRO TYPA	FRAC4	OBT TYPE	OBJ TD5 HY	DRO TVP5	FRACS
4	cha	1	sur	0.70	agu	1		ha	1 51	ib 2		sur	0.30	sub	2	lat.	1.00	null	020_120	null	0.00
2	cha	1	tot	1.00	agu	2	- r	ha	1 nul	1 0		null	0.00	null	0	null	0.00	null	õ	null	0.00
4	cha	2	sur	0.70	agu	3	r	har	1 si	ıb 4		sur	0.30	sub	4	lat	1.00	null	0	null	0.00
2	cha	2	tot	1.00	agu	4	r	har	1 nul	1 0		null	0.00	null	0	null	0.00	null	0	null	0.00
5	cha	3	sur	0.68	aqu	5	r	hq	1 sı	ıb 6	5	sur	0.28	sub	6	lat	1.00	res	1	sur	0.04
2	cha	3	tot	1.00	aqu	6	r	hg	1 nul	L1 0)	null	0.00	null	0	null	0.00	null	0	null	0.00
5	cha	4	sur	0.68	aqu	7	r	hợ	1 sı	ub 8		sur	0.28	sub	8	lat	1.00	res	2	sur	0.04
3	cha	4	tot	0.96	aqu	8	r	hg	1 re	es 3		tot	0.04	null	0	null	0.00	null	0	null	0.00
5	cha	5	sur	0.68	aqu	9	r	hg	1 su	ıb 10)	sur	0.28	sub	10	lat	1.00	res	4	sur	0.04
2	cha	5	tot	1.00	aqu	10	r	hg	1 nul	L1 0)	null	0.00	null	0	null	0.00	null	0	null	0.00
5	cha	6	sur	0.68	aqu	11	r	hg	1 sı	ıb 12		sur	0.28	sub	12	lat	1.00	res	5	sur	0.04
3	cha	6	tot	0.96	aqu	12	r	hg	1 re	es 6	5	tot	0.04	null	0	null	0.00	null	0	null	0.00
5	cha	7	sur	0.68	aqu	13	r	hg	1 sı	ıb 14		sur	0.28	sub	14	lat	1.00	res	7	sur	0.04
3	cha	7	tot	0.96	aqu	14	r	hg	1 re	es 8		tot	0.04	null	0	null	0.00	null	0	null	0.00
4	cha	8	sur	0.70	agu	15	r	ha	1 si	ıb 16	5	sur	0.30	sub	16	lat	1.00	null	0	null	0.00

Infinite loop

Conclusions and outlook

Advantages of SWAT+

- More realistic simulation of water areas and stream networks
- Improved simulation of landscape position, overland routing, and floodplain processes
- More flexibility in defining spatial interactions of objects within the watershed

Next steps

- Improve the simulation of runoff generation and routing processes within and across landscape units (when and how do the hillslopes become connected to the stream?)
- Daily update of connect files during simulation?
- Enhance the simulation of interactions between streams/rivers and floodplains

K. Bieger, J.G. Arnold, H. Rathjens, M.J. White, D.D. Bosch, P.M. Allen, M. Volk, and R. Srinivasan Introduction to SWAT+, a completely restructured version of the Soil and Water Assessment Tool Journal of the American Water Resources Association 53(1):115-130

kbieger@brc.tamus.edu

Little River Experimental Watershed (LREW)

Area: 334 km²

Average annual precip: 1208 mm Average temperature: 19.1°C Average streamflow: 2.95 m³/s

Gently sloping uplands Broad, wooded floodplains

Watershed configuration

	SWAT Soil & Water Assessment Tool	SOIL & WATER ASSESSMENT TOX)L	Advantages of SWAT+
•	Subdivision of subbasins into HRUs Water areas defined as HRUs	 Separation of ward land areas ward land areas wards Water areas defined areas defined areas definition of LS aggregate HRUs 	ater within ined as oirs Js to	More realistic simulation of water areas Improved simulation of landscape position, overland routing, and floodplain processes
•	HRUs represented by their entire area within a LSU during calculation of land phase processes	 HRUs represent contiguous field user-defined dimensions, act area used as ex factor 	ed by a • with ual HRU pansion	Calculation of land phase processes independent of HRU area

Spatial connections

SWAT Soil & Water Assessment Tool	SWAT+	Advantages of SWAT+
 All spatial connections defined in fig.fig file One predefined receiving object 	 One *.con file per spatial object to define outflow hydrographs, fractions, and receiving objects 	 More flexibility in defining spatial interactions of objects within the watershed

channel.co	on: C	Channel spati	ial connect	ions - LREW	Sub Water										
CHA_NU	MB	CHA_NAME	LATITUDE	LONGITUDE	AREA	CHA	WST_NAME	CONST_TYPE	OVERFLOW	RULE	OUT_TOT	OBJ_TYP1	OBJ_ID1	HYDRO_TYP1	FRAC1
	1	cha1	31.742	-83.732	175.320	1	1	0	0.000	0	1	cha	49	tot	1.000
	2	cha2	31.720	-83.696	102.060	2	1	0	0.000	0	1	cha	146	tot	1.000
	3	cha3	31.674	-83.652	371.700	3	1	0	0.000	0	1	res	173	tot	1.000
	4	cha4	31.647	-83.682	86.490	4	1	0	0.000	0	1	cha	165	tot	1.000
	5	cha5	31.620	-83.736	169.920	5	1	0	0.000	0	1	cha	202	tot	1.000
	6	cha6	31.572	-83.572	103.050	6	1	0	0.000	0	1	cha	126	tot	1.000
	7	cha7	31.531	-83.549	120.240	7	1	0	0.000	0	1	cha	186	tot	1.000
	8	cha8	31.506	-83.620	139.770	8	1	0	0.000	0	1	res	174	tot	1.000
	9	cha9	31.738	-83.758	363.780	9	1	0	0.000	0	1	res	175	tot	1.000
	10	cha10	31.717	-83.679	83.700	10	1	0	0.000	0	1	res	176	tot	1.000
	11	cha11	31.687	-83.755	174.960	11	1	0	0.000	0	1	res	177	tot	1.000
	12	cha12	31.652	-83.711	165.960	12	1	0	0.000	0	1	cha	243	tot	1.000
	13	cha13	31.608	-83.602	83.790	13	1	0	0.000	0	1	cha	213	tot	1.000
	14	cha14	31.568	-83.620	467.640	14	1	0	0.000	0	1	cha	180	tot	1.000
	15	cha15	31.543	-83.665	100.440	15	1	0	0.000	0	1	cha	151	tot	1.000
	16	cha16	31.495	-83.543	191.250	16	1	0	0.000	0	1	res	178	tot	1.000
	17	cha17	31.742	-83.750	91.710	17	1	0	0.000	0	1	res	179	tot	1.000
	18	cha18	31.713	-83.659	113.940	18	1	0	0.000	0	1	res	180	tot	1.000
	19	cha19	31.682	-83.668	71.550	19	1	0	0.000	0	1	cha	171	tot	1.000
	20	cha20	31.646	-83.703	201.240	20	1	0	0.000	0	1	cha	246	tot	1.000
	21	cha21	31.614	-83.724	225.090	21	1	0	0.000	0	1	res	181	tot	1.000
	22	cha22	31.563	-83.572	69.120	22	1	0	0.000	0	1	cha	126	tot	1.000
	23	cha23	31.537	-83.580	158.850	23	1	0	0.000	0	1	cha	220	tot	1.000
	24	cha24	31.482	-83.574	90.180	24	1	0	0.000	0	1	cha	79	tot	1.000
	25	cha25	31.738	-83.743	101.790	25	1	0	0.000	0	1	cha	57	tot	1.000
	26		01 710	00 750	410 670	26		^	0.000	<u>^</u>			100		1 000

National model assessments

- Conservation Effects Assessment Project: Predict benefit of conservation practices in agriculture
- Real-time and forecast simulations: County-level maps of current and near-future soil moisture, plant growth etc. to inform stakeholders

- More localized processes in CEAP II:
 - Low order streams
 - Gullies
 - Riparian floodplains

Constructing a national SWAT+ model

- Define connections between HUC12s based on 2015 NRCS HUC12 data
- Identify main and tributary channels based on drainage area, length, and connectivity
- Classify water bodies (reservoirs, ponds, wetlands) based on NHDPlus
- Define internal connections

Conceptual model

Bieger et al.

Conceptual flow paths: 1 landscape unit

Conceptual flow paths: 2 landscape units

2 SWAT+ setups

7/12/2017

Landscape units

- Hydrologic landscape units are
 - elements of a (sub)watershed
 - defined to account for landscape position and processes
- Two landscape units
 - Upland and floodplain
 - Different hydrologic properties and processes (slope, storage, sediment processes)

ET and surface runoff (1 LSU)

