Effects of Conservation Practices on Phosphorus Loss Reduction from an Indiana Agricultural Watershed

Dr. Qingyu Feng
SWAT International Conference,
2016, Beijing, China

Coauthors: Dr. Bernard Engel, Dr. Dennis Flanagan, Dr. Chihua Huang
Presentation outline

• Objective
• Background
• Method
• Preliminary results
Objectives

- Evaluate phosphorus loss and effectiveness of BMPs for P loss reduction at field scale
 - Evaluate BMP effects with observed data
 - Evaluate BMP effects using APEX at both the field and Maumee River Basin scale
 - Develop online interface for APEX model
Background: Phosphorus loss is causing serious water quality problems

http://www.toledoblade.com/local/2014/08/03/Water-crisis-grips-area.html

Water crisis grips hundreds of thousands in Toledo area, state of emergency declared

By Tom Henry | BLADE STAFF WRITER

Published on Aug. 3, 2014 | Updated 8:03 p.m.

Background: Lake Erie Basin is a heavily agricultural basin.
Background: Factors affecting excessive P loss

- Climate change
- Crop
 - Cropping systems
 - Crop nutrient efficiency
 - Roundup ready crops
- Ethanol production
- Fertilizer
 - Fertilizer placement
 - Fertilizer rate
 - Tri-state recommendations
 - Fertilizer source
 - Fertilizer timing
 - Manure
 - Nitrogen
 - Misconceptions about phosphorus loss
- Soil
 - Increased soil pH
 - Products sold to increase soil phosphorus solubility
 - Alteration to soil biology
 - Soil testing and analysis
 - Stratification of phosphorus
- Large farms
- Tillage
 - No-Till
- Tile drainage
- Social activity
 - Commodity prices
 - Rental agreement
- Lower levels of sediment in water
- Zebra Mussels
Background: Modelling efforts are focusing on large river basins

• Field scale information if missing with large scale model results
 – Missing the important processes of DRP loss
 – Generally aggregated, even though HRUs in the SWAT model could be smaller
Methods

– Evaluate BMP effects with observed data
 • Data availability
 • Analysis of data

– Evaluate BMP effects using APEX at field and Maumee River Basin
 • Calibrate and validate APEX at the edge of field
 • Simulate different BMPs using APEX model
 • Simulate all fields in the Maumee River basin

– Develop online interface for APEX model
Methods: Data availability (2004 to now)

• Flow:
 – Surface: 2 mins interval
 – Tile: 10 min normally and 1 mins at larger flow events

• Water quality
 – NH4, NO2, NO3, TKN, OP, TP, and others
 – Event based monitoring

• Climate:
 – Prcp, max and min temperature, solar radiation, wind speed, and relative humidity
 – 10 mins

• Management practices recorded by contractor.
Interpolating phosphorus load

\[l_1 = f_1 \times c_1 \]
\[l_5 = f_5 \times c_5 \]
\[l_2 = a \times f_2 + b \]
\[l_3 = a \times f_3 + b \]
\[l_4 = a \times f_4 + b \]
Flow and phosphorus at daily level

- Sediment
- Surface Flow
- Total P
- Ortho P
- Tile flow
Surface vs tile P loss

<table>
<thead>
<tr>
<th></th>
<th>Avg ratio Ortho P /Total P Load</th>
<th>Total P load growing season (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>0.58</td>
<td>0.59</td>
</tr>
<tr>
<td>Tile</td>
<td>0.35</td>
<td>0.36</td>
</tr>
</tbody>
</table>

![Graph showing load vs time for Ortho P-T, Total P-T, Ortho P-S, Total P-S](#)
Methods: APEX validation at the edge of fields

– Evaluate BMP effects with observed data
 • Data availability
 • Analysis of data

– Evaluate BMP effects using APEX at both the field and Maumee River Basin scale
 • Calibrate and validate APEX at the edge of field
 • Simulate different BMPs using APEX model
 • Simulate all fields in the Maumee River basin

– Develop online interface for APEX model
Modelling efforts

ADE 2009/03/10-11

ADE 2011/04/22-24

Flow (m³/s)

Hour

Simulated flow
Observed flow

Flow (m³/s)

Hour

Simulated flow
Observed flow

ADE2011

ADE2011

Q
ObsQ
QDR
ObsQDR

Apr May Jun Jul Aug Sep Oct

Apr May Jun Jul Aug Sep Oct
Conclusion and next step

• Conclusion:
 – Field data indicated that P loss through surface flow was doubled for those through subsurface flow during the growing season.
 – Ortho P contributed large portion (averaged 70% across events for P surface flow and 35% from tile flow in 2010) of total P.
 – Uncalibrated APEX model provided reasonable simulations for flow loss at the edge of field.

• Next step:
 – Continue data analysis, including the seasonal variations of P load and the effects of conservation practices, relationship between orthography P and organic P.
 – Model these practices using the APEX model.
 – Expand the research to Maumee River basin.