Plug In Water Quality Modules in the SWAT Model

Zhonglong Zhang, PhD, PH, PE, Xinzhong Du, PhD, and Billy Johnson, PhD, PE
Outline

- Plug in water quality modules
- Integrating water quality modules into SWAT
- Model verification and evaluation
Plug In Water Quality Modules

Water Quality Modules
- Water temperature
- General constituents
- Nutrients
- Contaminants
- Mercury

HEC-RAS
HEC-ResSim
AdH
SRH-2D
Watershed Models
Plug In Water Quality Modules

- Water Model
 - Flow
 - Sediment
 - WQ Transport
 - TEMP.dll
 - GC.dll
 - NSMI.dll
 - NSMII.dll
 - CSM.dll
 - HgSM.dll
 - New.dll
Water Quality Data

Water Quality Analysis
Nutrient Simulation Module I (NSMI)
Nutrient Simulation Module I (NSMI)

- **State variables (16)**
 - Algae (phytoplankton, benthic)
 - Nitrogen (OrgN, NH4, NO3)
 - Phosphorous (OrgP, TIP)
 - Carbon (POC, DOC, DIC)
 - Organic matter (POM, POM
 - CBOD
 - DO
 - Alkalinity
 - Pathogen

- **Derived variables**
 - Algal biomass
 - TON, TKN, TN, DIP, TOP, TP, TOC, CBOD
 - Light attenuation, oxygen reaeration rate, pH
Contaminant Simulation Module (CSM)
Contaminant Simulation Module (CSM)

- Multi-media kinetics
 - Water column
 - Underlying sediment layer

- Multiple phase partitioning (equilibrium and non-equilibrium)
 - Water
 - DOC (Dissolved Organic Carbon)
 - Algae
 - Organic matter
 - Inorganic solids

- Eight (8) biochemical transformation processes
 - Ionization (5 species)
 - Degradation
 - Hydrolysis
 - Photolysis (Photodegradation)
 - Volatilization

- User-defined extra reaction (second-order)
- Transformations and daughter products
Soil and Water Assessment Tool

Weather (precip, air temp, etc.)

Watershed outlet

Watershed
- land cover, soil, slope

Surface and shallow groundwater flow

In-stream & lake processes

Point sources

Watershed outlet
Contaminant Simulation Modules in SWAT

- Atmosphere
 - Deposition: Wet and dry
 - Water inputs: External loadings
 - Water outputs: Wash off, Plant

- Landscape
 - Top soil layer
 - Multiple soil layers
 - Leaching
 - Overland flow
 - Lateral flow
 - Baseflow
 - Groundwater

- Aquatic
 - Stream
 - Water inputs: Lateral flow, Baseflow
 - Water outputs: Stream

- Plant
 - Overland flow
Model Testing and Verification - Proof of Concept
Lower Minnesota River Watershed
Mainstem HEC-RAS Model
Modeled and Observed Flow

RM 3.5 at Senlhi

- Observed
- Simulated

Monthly Streamflow (m³/s)

- 0
- 100
- 200
- 300
- 400
- 500
- 600
- 700
- 800
- 900
- 1000

Daily Streamflow (m³/s)

- 0
- 500
- 1000
- 1500
- 2000
- 2500
- 3000

Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10
Modeled and Observed NO$_3$+NO$_2$

NOx Load

NOx concentration

Load_Obs
Load_SWAT
NOx_Obs
NOx_SWAT

kg/day
HEC-RAS Modeled and Observed Data

- Nitrogen (NO₃) (mg/l): Observed and modeled data for the years 2001 to 2006.
- Ammonium Nitrogen (mg/l): Observed and modeled data for the years 2001 to 2006.
- Organic Nitrogen (mg/l): Observed and modeled data for the years 2001 to 2006.
Modeled and Observed DIP

DIP load

- Load_obs
- load_SWAT

DIP concentration

- DIP_Obs
- DIP_SWAT
HEC-RAS Modeled and Observed Data

![Graph of Orthophosphate (mg/l) and Organic Phosphorus (mg/l)](C:\MNriver\RAS\101413\LMNRRAS.wq03)

Legend:
- Obs: Minnesota Lower 5601.1
- Organic Phosphorus (mg/l)
- Orthophosphate (mg/l)
Integrated Watershed and Riverine Modeling Systems

SWAT

NSMI

CSM

HEC-RAS

Graphical Editor

Selected Data Set: /MINNESOTA - LOWER/2337.0 DS BOUNDARY/DISSOLVED OXYGEN/01JA...

Date/Time	Original (mg/l)	Estimate/Entry (mg/l)	Revised (mg/l)
30Sep2000, 24:00 | 9.93 | 9.93 | 9.93
07Oct2000, 24:00 | 11.35 | 11.35 | 11.35
14Oct2000, 24:00 | 13.65 | 13.65 | 13.65
21Oct2000, 24:00 | 10.00 | 10.00 | 10.00
28Oct2000, 24:00 | 8.70 | 8.70 | 8.70
04Nov2000, 24:00 | 8.06 | 8.06 | 8.06
18Nov2000, 24:00 | 6.02 | 6.02 | 6.02
25Nov2000, 24:00 | 5.65 | 5.65 | 5.65
02Dec2000, 24:00 | 5.76 | 5.76 | 5.76
09Dec2000, 24:00 | 6.03 | 6.03 | 6.03
16Dec2000, 24:00 | 6.89 | 6.89 | 6.89
23Dec2000, 24:00 | 7.76 | 7.76 | 7.76
Summary

- Water quality modules (NSM and CSM) have been integrated into SWAT
 - Further testing and verification
 - Refining model linkage

- Weakness of the SWAT in-stream and water body processes
 - Simplified hydrological routing
 - Simplified water quality processes

- Linked SWAT and riverine (HEC-RAS) modeling system in support of environmental and ecosystem studies
Questions/Comments?

Thank You

zhonglong.zhang@erdc.dren.mil