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Primary Objective:

Model the water table of Kalamazoo County, Michigan 
under various future scenarios of climate change, 
urbanization, and expanded agricultural production.

Sub Objective (primary for this presentation):

Use SWAT to simulate and map (at field scales) 
groundwater recharge under future scenarios of 
climate change.



Expectations:
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Evapotranspiration will increase due to higher 
temperatures.

Subsequent decrease in groundwater recharge.
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- Kalamazoo County, Michigan

- Existing MODFLOW model  by USGS
(Luukkonen et al. 2004)

- 40% agriculture, 21% forest, 
20% urban

- well draining soils

- moderate topographic relief

- precipitation 36 in./yr.

- population 254,000, growing

- average annual water use
- ag: 26 MGD
- industry: 5 MGD
- City of Kalamazoo: 19 MGD
- City of Portage: 6 MGD

Primary Study Site
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Intersecting watersheds of MODFLOW model boundary.

SWAT Study Site
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KALAMAZOO
COUNTY

Kalamazoo River 
Watershed

Headwaters of the 
St. Joseph River 

Watershed

Headwaters of the Thornapple 
River Watershed

Paw Paw River 
Watershed

Upper Dowagiac River Watershed

MODFLOW 
Model 

Boundary
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SWAT Inputs
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Ground-water Sustainability (Update)

Introduction Hypotheses Methods Results Next Steps

Data Source

Land cover Cropland Data Layer (2009-2013)

Soils SSURGO

Topography USGS 10-meter DEM

Irrigation Michigan DEQ, well logs

Consumptive water use Michigan DEQ

Point sources Michigan DEQ, US EPA

Dams USACE National Inventory of Dams

Weather Maurer et al., 2002.
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SWAT Inputs
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- Observed weather 
data interpolated to 
grid points

- 1/8 deg. resolution.

- Daily precip, min. 
temp., max temp.

- 1940 - 2010
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HRU Mapping
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- HRU thresholds:   Land cover – 3%, Soil – 3%, Slope – 3%.
- Back-mapped to raster format.
- Resulted in 256 sub-basins, 76,281 HRUs.
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HRU Mapping
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- HRU thresholds:   Land cover – 3%, Soil – 3%, Slope – 3%.
- Back-mapped to raster format.
- Resulted in 256 sub-basins, 76,281 HRUs.



SWAT Calibration
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To best simulate ground water recharge, SWAT was calibrated 
to baseflow conditions.

Legend

# USGS Gages

Kalamazoo County

SWAT Model Watershed

04097540
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SWAT Calibration
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USGS baseflow separation program identified days where 75% 
of flow was from ground water.

Observed Flow

Simulated Flow

Kalamazoo River – USGS Gage 04108660
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SWAT Calibration
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USGS baseflow separation program identified days where 75% 
of flow was from ground water.

Observed Flow

Simulated Flow

Kalamazoo River – USGS Gage 04108660
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Climate Change Simulation
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11 different models, each under various CMIP-3 scenarios, downscaled to 
Maurer grid points by Hayhoe, et al. (2013).

Daily values for precipitation and temperature through 2100.

Climate Models

1. CCSM
2. CGCM3-T47
3. CGCM3-T63
4. CNRM
5. ECHAM5
6. ECHO
7. GFDL-2-0
8. GFDL-2-1
9. HADCM3
10. HADGEM
11. PCM

Climate Scenarios

1. A1FI – rapid population growth, levels off mid-century, 
heavy fossil fuel use

2. A1B – rapid population growth, levels off mid-century, 
balanced fossil fuel use

3. A2 – continuous population growth, regional 
economic growth

4. B1 – population growth levels off, efficient energy 
technologies adopted
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Climate Change Simulation
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Run SWAT in 10-year increments, for each decade:

- adjust .wgn files

- adjust CO2 concentrations (ppm) from IPCC*

- A1Fi: 420 (2020) – 970 (2100)
- A1B:   403 (2020) – 717 (2100)
- A2:   417 (2020) – 856 (2100)
- B1: 412 (2020) – 549 (2100)

- run the model

- grab the outputs

* http://www.ipcc-data.org/ancilliary/tar-isam.txt
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SWAT Calibration
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- Calibrated SWAT models from 2000-2005

- Validated from 2006-2010

- Moriasi et al. (2007) provided guidance on flow metrics

Nash-Sutcliffe Efficiency Percent Bias

Very Good 0.75 - 1.0 < 10%

Good 0.65-0.75 10 – 15%

Satisfactory 0.5 – 0.65 15 – 25%

Unsatisfactory < 0.5 > 25%
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SWAT Calibration
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- Model performance for monthly baseflow

NSE % Bias

Very Good 0.75 - 1.0 < 10%

Good 0.65-0.75 10 – 15%

Satisfactory 0.5 – 0.65 15 – 25%

Unsatisfactory < 0.5 > 25%

SWAT Model / Gage Calibration NSE
Calibration % Bias 

(negative value = more 
simulated baseflow)

Validation NSE
Validation %Bias

(negative value = more 
simulated baseflow)

04108660 (Kalamazoo) .69 -1% 0.55 10%

04108600 (Kalamazoo) 0.02 -20% 0.89 -36%

04106000 (Kalamazoo) 0.66 -4% 0.69 -8

04105000 (Kalamazoo) 0.64 1% 0.48 <1%

04103500 (Kalamazoo) 0.86 -4% 0.58 8

04097500 (St. Joe) 0.66 -14% 0.55 3%

04097540 (St. Joe) 0.83 -16% 0.18 -13%

04096515 (St. Joe) 0.99 -50% 0.99 -65%

04096405 (St. Joe) 0.97 -6% 0.94 7%

Paw Paw 0.53 7% 0.50 -9%

Thornapple 0.61 1% 0.80 8%

Upper Dowagiac 0.49 3% 0.50 -6%
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SWAT Calibration
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NSE % Bias

Very Good 0.75 - 1.0 < 10%

Good 0.65-0.75 10 – 15%

Satisfactory 0.5 – 0.65 15 – 25%

Unsatisfactory < 0.5 > 25%Map of Nash Sutcliffe Efficiency Values

- Model performance for monthly baseflow

1.7 cms55.2 cms

1.2 cms
33.9 cms
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SWAT Calibration
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- Did not just rely on flow.

- Compared SWAT outputs to:

- Reported crop yields in NASS
- USGS estimates of ET
- USGS estimates of baseflow fraction
- Reported irrigation rates to M-DEQ and M-DARD
- Estimates of ground-water recharge from M-DEQ/USGS/RSGIS/IWR
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- SWAT Outputs for 04106000 (Kalamazoo)
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SWAT Future Simulations
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- Changes in recharge (120mm, 60%) due to two primary sources:

- Increased precip over the century (100mm, 10%)
- Decreased ET over the century (50 mm, 8%)

- Lower ET caused by higher CO2, plants transpire less.
- from the SWAT documentation:

“As carbon dioxide levels increase, plant productivity 
increases and plant water requirements go down.”
“Morrison (1987) found that at CO2 concentrations 
between 330 and 660 ppmv, a doubling of CO2 
concentration resulted in a 40% reduction in leaf 
conductance.”

- CO2 is at 970 ppm by 2100 for A1Fi, 549 ppm for B1.
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SWAT Future Simulations
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- From the SWAT Theoretical Documentation (p. 130):

= plant canopy resistance (s m-1)

= minimum resistance  of a single leaf (s m-1)

= leaf area index
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SWAT Future Simulations
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- Holding CO2 constant in 04097540 kept recharge flat while ET rose 
slightly.
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SWAT Future Simulations
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- Holding CO2 constant in 04097540 kept recharge flat while ET rose 
slightly.
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SWAT Future Simulations

31

- Spatial differences in HRU outputs.
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SWAT Future Simulations
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- Spatial differences in HRU outputs.

Baseline recharge
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SWAT Future Simulations
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- Spatial differences in HRU outputs.
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SWAT Future Simulations
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- Spatial differences in HRU outputs.

Recharge change, 2010 - 2090
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SWAT Future Simulations
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- Corn areas in 04106000 recharged most, urban least.
- Pasture started even with forest, surpassed it around 2050.
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Limitations
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- Land cover did not change in future simulations.

- Solar radiation and relative humidity did not change.

- Growing season parameters did not change (e.g. no double-
cropping).

- Did not calibrate for nutrients, may affect crop-growth.

Ground-water Sustainability (Update)

Introduction Hypotheses Methods Results Next Steps

Mapping Groundwater Recharge

Introduction Methods Results Conclusions



Conclusions
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- Groundwater recharge generally decreased in future climate 
scenarios, except for the b1 scenario.

- ET generally increased, except for the b1 scenario, due to increased 
CO2 levels.

- Crop yields were flat.

- Spatially, largest increases in recharge through 2100 are in forested 
and pasture areas.
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Next Steps
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- Feed the recharge maps into MODFLOW to produce steady-state 
head for each decade within each climate scenario.

- Run another batch of simulations for increased urbanization (more 
imperviousness around urban centers, more consumptive water use), 
with current climate conditions.

- Run another batch of simulations for expanded agriculture (marginal 
lands converted to corn-soy rotations, more lands implementing 
irrigation), with current climate conditions.

- Run a final batch of simulations combining the increased 
urbanization, agricultural expansion, and changing climate.
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