

October 14-16 | Purdue University | West Lafayette, IN, USA

Uncertainty Estimation of Hydrological Impacts of Bias-Corrected CMIP5 Climate Change Projections

Jungang Gao & Aleksey Sheshukov Biological and Agricultural Engineering, Kansas State University

1. Introduction

- Climate change scenarios in future, especially daily rainfall, are critically important for water resources management and planning, agriculture and water-users.
- It is clear that assessment of impact of climate change on hydrology and water resources suffers from large uncertainties. These can be divided into:
- (1) Uncertainty related to different GCM mdels,
- (2) uncertainty related to different representative concentration pathways (RCPs),
- (3) uncertainty to downscaling methods
- (4) uncertainty of hydrological models.
- Few researches focused on uncertainty of using different <u>observed datasets</u> as historical data to bias-correct GCM or RegCM data.

1. Introduction

Objectives

This research mainly focused on the following issues:

(1) Assessing changes of GCM climate data with and without bias correction

(2) Analyzing the uncertainties of bias corrections with different observed datasets

(3) Comparing hydrological impacts under different bias-corrected future climate scenarios using SWAT model.

2. Materials and Methods

2.1 Study area

- Middle Smoky Hill River (SHR) watershed, a 6,310.42 km² (1,559,338 ac) sub-watershed of the Arkansas Red Basin, is <u>located</u> within 11 counties in western Kansas.
- The <u>major tributaries</u> of SHR and water released from Cedar Bluff Reservoir together feed into the Kanopolis Reservoir
- Primary land use types are cropland (47%), pasture (47%), and 6% other land use (forest, urban, water, wetland, etc.).
- ▶ Highly variable **precipitation** from about 381 mm in the west to 635 mm in the east.
- Averaged <u>elevation</u>: 617 m (from 445 m to 925 m)

Weather dataset processing

rainfalls at the different rainfall

historical rainfall series to obtain a

ranks/percentiles.

Bias Correction Method: Daily Translation

(Mapelasoka and Chiew, 2009)

Weather dataset processing

SWAT model for Smoky Hill River Watershed

- 10-m DEM, sub-field LULC by KBS, STATSGO soil, 16 crop rotations
- 54 subbasins and 7179 HRUs
- Calibrated at 2 sites (Hays, Ellsworth) from 2008-2010

Period	NSE	pBias	RSR	R ²
Calibration (2008-2010)	0.79	2.76	0.46	0.79
Validation (2005-2007)	0.84	17.55	0.40	0.86
Validation (2011-2012)	0.84	13.65	0.41	0.84

2100s

Compared with Bias-corrected data:

GCM <u>underestimated</u> precipitation and

3.1 Climate Change Scenarios

tasmin, and overestimated tasmax.

	Annual change in <u>precipitation</u> (%)			
Scenario	Original	Bia	data	
	GCM	NCDC	PRISM	NEXRAD
2050s	0.21	2.68	3.13	2.48
2100 s	0.32	2.95	3.36	2.70
Scenario	Annual change in <u>tasmax</u> (%)			All data incl
	GCM	NCDC	PRISM	showed a i
2050s	1.63	-1.08	2.16	precipitatio
2100 s	3.97	1.26	8.30	Precipitation
				The largest
Scenario	Annual change in <u>tasmin</u> (%)		The lowest	
	GCM	NCDC	PRISM	
2050s	1.57	-0.86	1.17	Femperatu
2100s				the higher

1.12

3.55

3.18

3.1 Climate Change Scenarios

Original data of GCM

3.2 Uncertainty of Bias-corrected weather data

Historical Observed Data

3.2 Uncertainty of Bias-corrected weather data

2050s

3.2 Uncertainty of Bias-corrected weather data

2100s

3.3 Impacts of climate change on stream flow

Box-Whisker plots of changes in annual stream flow for RCP 8.5

- SWAT using <u>PRISM</u> corrected data predicted the <u>highest change</u> in stream flow in <u>2050s and 2100s</u>, compared with other two projections.
- The lower stream flow in <u>NCDC</u> relative to in PRISM doesn't agreed with higher precipitation and lower temperature in NCDC, other factors are needed to be recognized in the future.
- NEXRAD estimated the higher frequency of <u>extremely big precipitate events</u> with <u>lowest stream flow</u>, and PRISM displayed the highest stream flow with big events.
- The reason may be that too many <u>high precipitation</u> events happened <u>in summer</u>, not helping to improve annual mean flow.

4. Conclusions and Further Works

- There is a significant change for GCM climate data when using bias corrections with different observed datasets at time series.
- Bias corrections with different observed datasets don't have a consistent effect on temperature or precipitation.
- It should be noted uncertainty of hydrological impacts under different biascorrected future climate scenarios.

 More models and emission scenarios and more bias correction methods will be involved in the future.

Thanks for your attentions!

• Acknowledgements: NSF:CNH Systems Program, Grant No. 1313815

